

Control Systems of NPP_1

2013 IAEA/ANSN ETTG Workshop on Nuclear Safety Tailored for Regulators (17~21 June, 2013) Int. Nuclear Safety School, KINS, Korea

Name : Booh, In Hyoung E-mail : k307bih@kins.re.kr

Instrumentation & control

8A2

KINS

What is "Instrumentation and Control systems" in NPPs?

What is "I&C systems" in NPPs?

- Sensing / Monitoring Determining
- Controlling to meet required function

This session will cover;

□ Plant Control Systems

NSSS I&C OVERVIEW DIAGRAM FOR SKN 1&2

Agenda – we will have 5 hours to deal with;

- □ Fundamentals of I&C Systems
 - **Overview of Plant Control Systems**
 - Control Systems Design and Requirements;
 - NSSS Control Systems
 - Reactor Regulating System
 - Steam Bypass Control System
 - Feedwater Control System
 - Pressurizer Pressure Control System
 - Pressurizer Level Control System
 - □ Acceptance Criteria for Plant Control Systems

cf.) NSSS : Nuclear Steam Supply System

Overview of Plant Control Systems

Control Systems Design and Requirements;

- NSSS Control Systems
- Pressurizer Pressure Control System
- Pressurizer Level Control System

□ IAEA Safety Standard for Plant Control Systems

□ What is "I&C systems" in NPPs?

- Monitoring the plant parameters
 - Neutron, Temperature, Pressure, Level, Flow, etc.
- Determining those within design basis
 - Based on DBA
 - Based on operational requirements
- Protecting the plants in case of abnormal condition or accident
 - Plant Protection Systems
 - Engineered Safety Feature Actuation Systems
 - Diverse Protection Systems, etc.
- Controlling the components to meet those required function for normal operation
 - Pumps, Valves, etc.
 - NSSS control
 - Turbine control

- □ Typical concepts of I&C systems in NPPs
 - Example, Plant Protection Systems

 \square

Fundamentals of I&C Systems

- I&C Systems consist of
 - <u>Sensors</u>, Transducers, Switch
 - PLCs, micro-controllers,
 - NIC, switch, gateways, servers
 - Motors, valves, pumps,
 - Embeded Real-Time Operating Systems,
 - Fieldbus, Modbus, Profibus, Ethernet,
 - Plant control / protection systems software,
 - Main Control Room, Remote Shutdown Room,
 - HMI
 - * PLC : Programmable Logic Controller

- □ Transmitters in NPPs
 - Physical changes to electric signal (4~20mA)
 - Pressure
 - Differential pressure
 - Temperature
 - Flow
 - Level

- □ PLC (Programmable Logic Controller)
 - Industrial Digital Computer
 - Control logic for various purposes
 - Power Supply
 - Rack & Backplane Bus
 - Processor Module
 - Communication Module
 - Input/Output Module
 - » Digital Input/Output,
 - » Analog Input/Output,
 - » RTD Input, etc.
 - Engineering Workstation

482.6 x 281.35 x 294mm (19 inch Standard)

I&C systems must be designed, fabricated, installed, and tested to quality standards commensurate with the importance of the functions to be performed.

□ Hardware design

Soldering

In-Circuit Test

EMI/EMC Test

Seismic Test

Manufacturing Test

Performance Test

Environment Test

□ software design

Cy Active Grou	vity	Planning Activities	Requirements Activities	Design Activities	Implementation Activities	Integration Activities	Validation Activities	Installation Activities	Operation & Maintenance Activities
ontro	Softw Mana	are gement Plan	Requirements Specification	Design Specification	Code Listings	System Build Documents		Operations Manuals	
	Softw Devel	are opment Plar are QA		Hardware & Software Architecture				Installation Configuration Tables) Design
	Plan Integr	ation Plan						Maintenance Manuals	outputs
	Install Mainte Plan	ation Plan enance						Training Manual	Process implementation
(/	Traini) Opera	ng Plan ations Plan	Requirements Safety Analysis	Design Safety Analysis	Code Safety Analysis	Integration Safety Analysis	Validation Safety Analysis	Installation Safety Analysis	Change Safety Analysis
Process planning	Softw Safety Softw	are y Plan are V&V	V&V Requirements Analysis Report	V&V Design Analysis Report	V&V Implemen- tation Analysis & Test Report	V&V Integration Analysis & Test Report	V&V Validation Analysis & Test Report	V&V Installation Analysis & Test Report	V&V Change Report
	Plan Softw Plan	are CM	CM Requirements Report	CM Design Report	CM Implementation Report	CM Integration Report	CM Validation Report	CM Installation Report	CM Change Report

□ General structures of I&C Systems

Overview of Plant Control Systems

Control Systems Design and Requirements;

- NSSS Control Systems
- Pressurizer Pressure Control System
- Pressurizer Level Control System

□ IAEA Safety Standard for Plant Control Systems

□ Classification of I&C Systems

 Classification that commensurate with the function to be performed

Instrumentation

ହ

control

□ Classification of I&C Systems

• Software Classification

IEEE 1012	SIL 4	SIL 3	SIL 2	SIL 1
IAEA		Not important to		
	Safety	safety		
IEC 61226	Category A	Category B	Category C	Unclassified
KINS	Safety-Critical	Safety-Related		Non Safety
<u>w</u>	Protection (Safety critical)	Important to safety	Important to availability	General purpose (Non safety)

cf.) SIL (Software Integrity Level)

Plant Control Systems

- Not essential for the safety, but essential for the normal operation of plant
- Still, control system failure or inadvertent operation can affect to the performance of critical safety functions.

Instrumentation & control

- □ Typical control systems
 - Functional grouping & segmentation (ref. EPRI)

Reactivity Control	Automatic and manual control and monitoring of rod positions and manual control and monitoring of boron concentrations and neutron flux
S/G Control	Control and monitoring of main feedwater flow, main feed pumps and steam generator inventory
Turbine Steam Demand Control	Control and monitoring of turbine throttle valves and bypass valves
Pressurizer Pressure Control	Control and monitoring of the pressurizer heaters and spray and reactor coolant system pressure
Reactor Coolant System Inventory Control	Control and monitoring of makeup and letdown, reactor coolant system inventory and CVCS inventory

Typical control systems

- For the pressurized water reactor systems
 - Reactivity Control System

Boron Control System

- Reactor Power Cutback System
- Pressurizer Pressure and Level Control System
- ✓ Feedwater Control System

Steam Generator Water Level Control System

Steam Dump Control System.

Steam Bypass Control System

Safety System and Sensing Line Environmental Control

□ Typical control systems for Nuclear Steam Supply

Overview of Plant Control Systems

Control Systems Design and Requirements;

NSSS Control Systems

- Pressurizer Pressure Control System
- Pressurizer Level Control System

IAEA Safety Standard for Plant Control Systems

NSSS Control Systems

NSSS Control Systems

- Load Follow Operation
 - Reactivity feedback properties of the NSSS will inherently cause reactor power to match the total NSSS load

 \rightarrow turbine load

- Load Follow Control
 - The ability of NSSS to follow turbine load changes is dependent on the ability of control systems / operator to adjust;
 - reactivity,
 - feedwater flow,
 - turbine bypass steam flow,
 - reactor coolant inventory,
 - energy content of pressurizer.

NSSS Control Systems

NSSS Control Systems

- Provide capability to automatically follow limited load changes
- Provide capability to accommodate load rejections of any magnitude or the loss of one of two operating feedwater pumps without a reactor trip or lifting any safety valves.

Control System	Controlling Components	Controlled Parameter
Reactor Regulating System	Regulating CEA Position	Reactor Coolant Temperature
Steam Bypass Control System	Steam bypass valves	Secondary Pressure
Feedwater Control System	Downcomer & Economizer Feeewater Control Valves	Steam Generator Level
	Feedwater pumps (speed)	

Reactor's reactivity is controlled by

- adjustments of CEAs by rapid reactivity changes
- Adjustment of boric acid concentration for slow changes
 - suitable, or easy to control
- CEAs can either be controlled manually or automatically to maintain the programmed reactor coolant temperature and power level within the limits of CEA travel.

→ Reactor Regulating System

Control Element Assembly

Reactor

- □ Reactor Regulating System (RRS)
 - Automatic adjustment of reactor power
 - and reactor coolant temperature using TBN Load Index
 - Provides CEA movement (withdrawal, insertion & hold) and rate signals to CEDMCS to adjust reactor power

□ Function of RRS

- Provides a programmed T_ref as a function of turbine load
- Provides CEA movement to the CEDMCS
 - to reposition the regulating CEAs to maintain the reactor coolant T_avg within a deadband of the programmed reference temperature
- Provides automatic control of the reactor coolant T_avg and reactor power,
 - for each of the following plant conditions during plant operation between 15% and 100% power:
 - Loss of one out of two (1/2) operating feedwater pumps
 - 10% step change in NSSS load
 - 5%/min ramp changes in NSSS load
 - Steady-state conditions

□ Function of RRS

- Provides an Automatic Withdrawal Prohibit (AWP) signal to the CEDMCS
 - to stop CEA withdrawal on a high deviation of reactor coolant Tavg from reactor coolant T_ref
- Provides an Automatic Motion Inhibit (AMI) signal to the CEDMCS
 - to stop CEA motion on an input channel deviation

- □ Function of RRS system interface
 - Provides signal interface to PLCS, SBCS and FWCS
 - Provides indication to the operator on MCB & PDAS

Instrumentation

& control

- □ Input signals to RRS
 - Reactor Coolant Cold leg Temp.
 - Reactor Coolant Hot leg Temp.
 - Turbine Load Index

- impulse turbine pressure, which is linear to the turbine load, to determine T_ref of reactor coolant system
- Reactor Power
 - From control channels of the Excore Neutron Flux Monitoring System

- Output signals from RRS
 - CEA Automatic Withdrawal / Insertion Demand signal
 - CEA Rate Demand signal
 - High Tavg-Tref Alarm
 - High Tavg-Tref AWP signal
 - Low Tavg-Tref Alarm
 - RRS input Channel Deviation Alarm signal
 - CEA Motion Demand
 - Signal to SBCS, FWCS, PLCS,...
 - Information to PDAS, computer systems,..

Conceptual diagram of RRS

8A2

KINS

KOREA INSTITUTE OF NUCLEAR SAFETY

• CEA Insertion / Withdrawal

- RRS is designed to cover 10% step change and 5% ramp change of reactor power without tripping.
 - What about to a large load rejection, without tripping?
 - - to increase the load following capability of the NSSS
 - to include load rejections of any magnitude turbine trip from 100% power <u>without tripping the reactor or</u> <u>lifting pressurizer or main steam safety valves</u>
 - dissipates excessive energy in the NSSS to maximize plant availability by regulating Turbine Bypass Valves
 - prevent unnecessary opening of primary or secondary side safety valves

- □ Function of SBCS
 - 55% load rejection
 - Maintain steam header pressure in the following transients without reactor trip or lifting PZR or main steam safety value

 - Loss of one feedwater pump during three pumps operation
 - Initiate Reactor Power Cutback System (RPCS) whenever the magnitude of load rejection exceeds turbine bypass capacity
 - Provide a means of manually controlling the RCS temperature during plant heatup and cooldown

□ Function of SBCS

- Operate the eight turbine bypass valves in a sequential manner
- - Whenever reactor power falls below 15% or the reactor & turbine power falls below predetermined thresholds
- AWP signal to CEDMCS
 - Whenever turbine bypass demand exists
- Automatic or Manual Control capability

□ Major Input/Output of SBCS

- Input
 - Steam flow
 - Steam header pressure
 - Pressurizer pressure
- Output
 - Steam bypass valves modulation & quick open demand
 - CEA AMI
 - Reactor Power Cutback demand generation

- Accommodate load rejections of any magnitude without tripping the reactor or lifting the pressurizer or steam generator safety valves
- Maintain reactor power at a desired level following a turbine trip or load rejection
- Manually limit reactor coolant heat-up rate during startup
- Provide a mean of manually removing energy during plant cooldown

Instrumentation & control

□ Diagram of SBCS

□ Operations of SBCS

- - Automatic Control
 - - » Valve is controlled by the operator when the Automatic Modulation Permissive signal is present in SBCS
 - Individual Manual Control
 - » Valve is controlled by the operator from its M/A Controller when the Automatic Modulation Permissive signal is present in SBCS
- Abnormal conditions
 - SBCS automatically controls excess energy in the NSSS due to load rejection including a turbine trip from 100% power by regulating the flow of steam through turbine bypass valves in conjunction with RPCS

NSSS Control Systems - RPCS 🗸

□ Reactor Power Cutback System

- NSSS normally operates with minor perturbations in power and flow.
 - Can be handled by SBCS and RRS
- However, large plant imbalances can occur,
 - Turbine trip
 - Loss of one of two operating main feedwater pumps
- How to maintain the NSSS within the control band ranges is accomplished by a rapid reduction of NSSS power?

Instrumentation & control

Reactor Power Cutback System

- - simultaneous dropping of 1 or more pre-selected groups of full-length regulating CEAs into the core
 - Control signal to Turbine to rebalance turbine and reactor
 power

Reactor Power Cutback System

• CEA selection by manual or automatic (from plant computer)

CONTROL GROUP	SUBGROUP	CEA
Shutdown group A	2 3 5	6, 8, 10, 12 7, 9, 11, 13 18, 19, 20, 21
Shutdown group B	6 7 9 10	22, 24, 26, 28 23, 25, 27, 29 34, 36, 38, 40 35, 37, 39, 41
Reaulating group 1	1 14 15	2, 3, 4, 5 54, 57, 60, 63 56, 59, 62, 65
Reaulating group 2	12 13	46, 48, 50, 52 47, 49, 51, 53
Reaulating group 3	11 16	42, 43, 44, 45 55, 58, 61, 64
Reaulating group 4	8	30, 31, 32, 33, 1
Reaulating group 5	4	14, 15, 16, 17
Part Strength Group	17 18	66, 68, 70, 72 67, 69, 71, 73

- □ SBCS Operation Scenario
 - Loss of Small Load(20%)

Instrumentation

& control

- □ SBCS Operation Scenario
 - Loss of Small Load(20%)

Instrumentation & control

Instrumentation & control

NSSS Control Systems - SBCS

□ SBCS Operation Scenario

Loss of Small Load(20%)

- □ SBCS Operation Scenario
 - ישיעה שליים באייר באי באייר באיי

Instrumentation

& control

□ SBCS + RPCS Operation Scenario

• Loss of Large Load(95%)

□ SBCS + RPCS Operation Scenario

• Loss of Large Load(95%)

Instrumentation & control

NSSS Control Systems - SBCS

□ SBCS + RPCS Operation Scenario

□ SBCS + RPCS Operation Scenario

□ SBCS + RPCS Operation Scenario

• Loss of Large Load(95%)

□ SBCS + RPCS Operation Scenario

• Loss of Large Load(95%)

NSSS Control Systems - FWCS 🗸

- Feedwater Control System
 - Regulating feedwater flow rate to its corresponding steam generator
 - by adjusting the position of feedwater control valves
 - Economizer
 - Downcomer
 - Regulating the speed of operating feedwater pumps
 - by transmitting speed setpoint demand signal to the feedwater pump speed control system
 - 1 FWCS is provided for the control of each S/G water level

Feedwater Control System

 Maintain steam generator level by regulating the feedwater flow rate

SA2

KINS

NSSS Control Systems - FWCS

Instrumentation **NSSS Control Systems - FWCS**

- □ Design requirements
 - Three Element Control
 - Reactor power > 15%
 - Input signal :
 - S/G Level, »
 - Total Steam Flow, »
 - **Total Feedwater Flow** »
 - Single Element Control
 - Reactor power : between 5% and 15%
 - Input signal :
 - » S/G Level
 - Feedwater Flow Control after Reactor Trip
 - Input signal :
 - TAVG »

& control

□ Design requirements

- Provides automatic control of S/G level during plant operation : 5%~100% power
 - \pm 1% step and \pm 1%/min ramp changes (5%~15% power)
 - $\pm 10\%$ step and $\pm 5\%$ /min ramp changes (15%~15% power)
 - Andrew And
- Provide automatic control of S/G level during abnormal plant operation
 - Reactor Trip
 - Loss of one feedwater pump during three pumps operation
 - S/G High Level

- - Output Signals for Feedwater Control
 - Economizer Valve position Demand Signal
 - Downcomer Valve Position Demand Signal
 - Feedwater Pump Speed Demand Signal
 - Automatic / Manual Control Capability

Instrumentation & control

KINS

NSSS Control Systems - FWCS

- Input
 - S/G level
 - Total steam flow
 - Total feedwater flow
- PI Controller
- Output
 - Control downcomer v/v
 - Control ecomizer v/v
 - Control feedwater pump

□ Feedwater Control Types Depending on Power

- □ Design requirements
 - 10% step changes

KINS

NSSS Control Systems - interface

Typical Interface within NSSS Control System

□ Operation

- Low Power Operation
 - Single Element Control by Master PI Controller

 - Input signal : S/G Level
- Normal Operation
 - Three element control by Mater PI Controller
 - Reactor power > 15%
 - Input signal : S/G Level, Total Steam Flow, Total Feedwater Flow
- After Reactor Trip
 - After the reactor is tripped, the feedwater flow rate is controlled by using the primary coolant loop average temperature (TAVG) signal
 - Flow demand signal is generated by PI function, its input is compensated TAVG signal

NSSS Control Systems

- Component of NSSSControl systems
 - PLC
 - Process control logic of each sub-system
 - Switching function if a component fails
 - Field I/O modules
 - Networking
 - IBM Compatable PCs
 - Drive FPD
 - FPD (Flat Panel Display)
 - Test & Maintenance
 - Display & Indication
 - 10.4" Color Touch Screen

Always we keep watching our Atomic Power

Name : Booh, In Hyoung E-mail : k307bih@kins.re.kr

Thank You

