

The Asian Nuclear Safety Network

Site Selection, Safety Review, Safety Confirmation, and Monitoring

7. Foundation and Slope Stability (SER 2.5.4 & 2.5.5)

Taek-Mo SHIM

k147stm@kins.re.kr

Korea Institute of Nuclear Safety

Structural Systems and Site Evaluation Department

June 2012

The Asian Nuclear Safety Network

Site Selection, Safety Review, Safety Confirmation, and Monitoring

7. Foundation and Slope Stability (SER 2.5.4 & 2.5.5)

Taek-Mo SHIM

k147stm@kins.re.kr

Korea Institute of Nuclear Safety

Structural Systems and Site Evaluation Department

June 2012

Contents

Basic Information

Design considerations of Foundation

Engineering properties of rocks

Foundation stability evaluation

Contents

Basic Information

Design considerations of Foundation Engineering properties of rocks Foundation stability evaluation Slope stability evaluation

Basic Information

Basic considerations

- Foundation stability evaluation methods, investigation or test methods are dependent on the site condition (rock site or soil site)
- Full understanding of geological characteristics is necessary before selecting the evaluation and test methods
- The range of application and restrictions of test methods are considered

Understanding of representative value

- Not one method of test results are utilized for the determination of the property value
- Results from more than two test methods are utilized
- Special attention be given the No. of test(samples) and its standard deviation

Basic Information

- Rock and rock mass discrimination
 - Rock (material)
 - Intact rock with no joint
 - Used for Rock classification and characterization

Rock mass

Whole rock with joint, it represents the real condition of foundation materials

- Large-scale rock mass behavior must be considered in all real rock engineering problem
- Lab. Test on the specimen is only one step for understanding of in-situ rock performance

Contents

Basic Information

Design considerations of Foundation Engineering properties of rocks Foundation stability evaluation Slope stability evaluation

Design considerations of foundation

Stable condition of foundation

- Stable geologic condition with homogeneous subsurface materials
- Suitable bearing capacity with limited (differential) settlement
- Major evaluation items
 - Bearing capacity
 - Settlement or differential settlement
 - Liquefaction potential
 - Seismic wave propagation characteristics
 - Slope stability
 - Possibility of improvement of weak foundation materials

Design considerations of foundation

4Basic data necessary to evaluate the foundation stability

- Geological characteristics and geological structure
- Static engineering properties
 - Unit weight, poisson's ratio, compressive strength, young's modulus, deformation modulus, etc.
- Dynamic engineering properties
 - Poisson's ratio, young's modulus, compressional/shear wave velocity, seismic wave velocity profile
- Ground water condition
 - Scroundwater level, water quality, existence of artesian condition, etc
- •Layout of the facilities and the nature of the structural foundation
- •Characteristics of permanent or temporal cut slope

Contents

Basic Information Design considerations of Foundation Engineering properties of rocks Foundation stability evaluation Slope stability evaluation

Representative geotechnical investigations and tests

- Surface geologic investigation
- Boring (borehole logging)
- Trenches
- Geophysical exploration (seismic wave velocity and velocity structure)
- Groundwater exploration
- In-situ test (rock mass deformation test, Point Load Test, Standard Penetration Test, etc.)
- Laboratory test (index test, compressive strength, sonic velocity, etc.)

Uniaxial compressive strength(Qu)

- Using for the the determination of bearing capacity of foundation material
- Triaxial/Uniaxial compressive strength test

Uniaxial compressive strength test

> $Qu = P/A = 4P/\pi D^2$ D:Diameter of core, P:stress acting parallel to axis of core,

A: cross section of the core

- Point load test (**PLT**) : in-situ test for obtaining point load index
 - > Is = P/d², Qu = 24 I_{s(50)} P:failure pressure, I_{s(50)}:point load index
 - Correction :test results are corrected at D=50mm
 - Is₍₅₀₎=F* Is(F: correction factor,(D/50)_{0.45}, Is : Point index by direct measurement)

> In general, $Qu = 24 * Is_{(50)}$ (about 20-25 times) is applied

Example of uniaxial compressive strength(Qu) determination using point load index

Selection of representative value (R.V.)

- Direct measurement : in-situ test (rock mass deformation test, joint characteristics, groundwater level, etc.)
- Indirect measurement : correlation with related parameters (Rock Mass Rating, Rock Quality Designation, velocity index, etc.)
- Selection of R.V. : Consideration of test reliability and site condition

Rock mass deformation modulus, (Ed)

- Used for evaluation of deformation characteristics and settlement for foundation materials
- Direct measurement using the stress-strain relationship
- Indirect measurement correlation with related parameters

Rock mass deformation modulus, (Ed)

- Direct measurement
 - > Jack test, elastometer test, etc
- Indirect measurement
 - Correlation with RMR (Rock mass rating), RQD (Rock Quality Designation) and Velocity index
 - RMR method : Rating according to compressive strength, RQD, Spacing of joint, nature of joint (surface roughness, fillings, and aperture), joint orientation, and groundwater condition
 - ✓ Correction according to joint geometry
 - ✓ Determination of rock mass deformation modulus using the relationship of the modulus and RMR (Bieniawski, 1978)

Definition of **core recovery** and **RQD**

	I	Recovery				Compressive	Rating	
	Core (all)	Modif.core (100 + mm)				strength (MPa)		
0	25		% Recovery =	<u>1384</u> x 100 = 86.5	5%	> 250	15	
	132	132	RQD =	$\frac{1208}{1600}$ x 100 = 75.8	5%	100-250	12	
	10 139	139	Rock quality =	"fair"		50-100	7	
	135	135				25-50	4	
)	23	120				10-25	2	
i = 1600 mm	116	116	Rock quality ^a	RQD, % 0 - 25 25 - 50 50 - 75	Rock quality ^a RQD, %		2-10	1
	232	232	Very poor Poor Fair			1-2	0	
Bur	14		Good Excellent	75 - 90 90 -	• Core	 Core recovery is the ratio of core length to total lengt 		
	222	222	^a From Deere((1968) expr		essed as percentage	e longth of rock cor	
	112	110			piece	s longer than 10cm	1. It expressed as a	
	46	112			perce	childye of a given it		
خا	Σ =1384	Σ =1208					10	

RMR Score and Rock Quality by RQD				RMR Score by Joint Spacing		
RQD (%)	Score	Rock Quality		Joint Spacing (m)	Score	
90 ~ 100	20	Excellent		>2.0	20	
75 ~ 90	17	Good		0.6 ~ 2.0	15	
50 ~ 75	13	Fair		0.2 ~ 0.6	10	
20 ~ 50	8	Poor		0.06 ~ 0.2	8	
<25	3	Very Poor		<0.06	5	

RMR Score by Joint Condition

Joint Condition	Score	
Very rough surface within a limited range; hard rock		
Slightly rough surface; less than 1 millimeter in joint width; hard rock		
Slightly rough surface; less than 1 millimeter in joint width; soft rock		
Smooth surface; gouge-filling substances with the thickness of 1-5 millimeters;		
joint extended for over several meters		
Open joint filled with gouge of over 5 millimeters in thickness	0	
Open by over 5 millimeters; joint extended for over several meters		

RMR Score by Groundwater Condition

Water Inflow per Tunnel Length of 10 Meters (L/min)	Water Pressure or within Joint/ Principal Stress	or	Ordinary Condition	Score
Not applicable	0		Completely dry	15
< 10	$0.0 \sim 0.1$		Humid	10
10 ~ 25	0.1 ~ 0.2		Wet	7
25 ~ 125	0.2 ~ 0.5		Water drops dripping	4
> 125	> 0.5		Fluid	0

Grades of Rock Quality by RMR

Grade	Rock Quality	RMR
I	Very good rock	81 ~ 100
II	Good rock	61 ~ 80
III	Fair rock	41 ~ 60
IV	Poor rock	21 ~ 40
V	Very Poor rock	0 ~ 20

Rock mass deformation modulus determination using RQD and uniaxial compressive strength (Plate jacking Test at Dworshak Dam, Deer, 1967)

Rock mass deformation modulus determination using velocity index $(V_F/V_L)^2$ and modulus ratio (E_d/E_{50}) (Coon and Merritt, 1970)

Example of rock mass deformation modulus determination

	XX Pla	ant unit 1	XX Plant unit 2		
	Seismic Class I	mic Class I Non-seismic Class I		Non-seismic Class I	
	Struct.	Struct. Struct.		Struct.	
RQD(%) 2.41 2.17		2.07	1.65		
RMR	3.80	2.20	2.60	2.00	
In-situ Test	2.37	2.30	2.87	3.20	
Velocity Index	2.08		2.01		
Index value(mean)		2.40	2.30		

Procedural example of unconfined compressive strength determination

• Procedural example of rock mass deformation determination

Contents

Basic Information

Design considerations of Foundation

Engineering properties of rocks

Foundation stability evaluation

Procedure for foundation stability analysis

Velocity structure model

- Development of the seismic response characteristics of foundation materials : site-specific response spectrum
- If the s-wave velocity is equal or more than specified value, then the foundation assumed to be a fixed base
- If the s-wave velocity is less than specified value, then the soil structure interaction (SSI) analysis should be conducted
 - The material with s-wave velocity less than specified value does not mean unsuitable for foundation materials

Spacing of discontinuities	Ksp	Spacing width (m)
Moderately close	0.1	0.3 - 1
Wide	0.25	1 - 3
Very Wide	0.4	> 3

Settlement evaluation for rock site

$$\rho = \frac{P(1 - v_m^2)}{\beta_z E_m A^{0.5}} \qquad \rho = \frac{0.9P}{E_m A^{0.5}} = \frac{0.9P}{\alpha_E E_r A^{0.5}} \qquad \alpha_E = \frac{Ei}{E_r}$$

• P: load, Vm : poisson's ratio of rock, Em: young's modulus of rock,

A: foundation area, βz: foundation shape coefficient

- For rock site, the settlement may negligible
- Computer simulation, 1.0 inch is accepted as allowable criteria
- In case of differential settlement, the safety of pipes between Structures should be considered
- Liquefaction potential evaluation
 - When the site is composed of rock materials, then this analysis is not needed

Geological and geotechnical map of foundation material

Development of discontinuities in foundation rock

Rose diagram for dykes in the foundation rock

Rose diagram of fault in the foundation rock

22

Foundation stability evaluation

Improvement of unsuitable foundation and slope materials

Contents

Basic Information

Design considerations of Foundation

Engineering properties of rocks

Foundation stability evaluation

- Evaluation of slope stability
 - Slopes are divided into rock slope and soil slope type
 - Different evaluation methods are applied according to the slope type
 - Static and dynamic analysis shall be conducted
 - Special attention should be paid to the temporal slope such as cut slope during construction
- Basic information (Data requirements)
 - Dimensions and the type of slope
 - Geologic characteristics especially information about discontinuities
 - Grounder water condition
 - Geophysical exploration results
 - Borehole logging and borehole 3-D images

- Analysis of slope stability
 - For soil slope the factor of safety has minimum value of 1.5 in static analysis and of 1.2 in dynamic analysis
 - For rock site numerical analysis and stereo net-based graphic analysis is possible
- Treatment of unstable slope
 - Lowering the slope angle, drainage, anchoring, rock bolting, grouting, shot-crete, etc.
- Monitoring of long-term slope stability
 - Monitoring of groundwater condition, slope angle, etc

4 Example of surface geological map for slope stability analysis

Example showing plan and wedge failure analysis results

Detailed on-site slope investigation

•Closure

Thank you for your attention!

