Indonesia

Emergency Preparedness and Response

9th Annual Meeting of the ANSN - Topical Group on Emergency Preparedness and Response
Dengkil, Malaysia
12 and 13 June, 2014
Content

• Introduction
• EPR Self Assesment against SSG-16
• Indonesia Road Map NPP
• Regulation of EPR
• EP - Current Status of Indonesia
• National Nuclear Emergency Preparedness System
• Response Of Fukushima Accident
• Conclusion
• National Activities (2013-2015)
Increasing number of countries considering the introduction of nuclear power.

Need to comply with the IAEA Safety Standards for ensuring safety and enhancing international confidence.

Development of the Safety Infrastructure Guide SSG 16

Roadmap to apply the entire set of IAEA Safety Standards in countries embarking on nuclear power
Safety infrastructure is the entire set of the safety-related elements of the national infrastructure necessary for implementing a nuclear power programme.

Due to the importance of safety, those safety-related elements have requirements which they shall comply with.

These requirements are stated in the IAEA Safety Standards.
Main phases of the safety infrastructure development in the lifetime of a nuclear power plant (based on INSAG-22)

- **Phase 1**: Safety infrastructure before deciding to launch a nuclear power programme (1~3 years)
 - Negative decision
- **Phase 2**: Safety infrastructure before bidding process (3~7 years)
 - Positive decision
- **Phase 3**: Safety infrastructure before commissioning and operation (7~10 years)
- **Phase 4**: Safety infrastructure during operation of the NPP (40~60 years)
- **Phase 5**: Safety infrastructure during decommissioning and waste management phases of a NPP (20~100+ years)

Safety Infrastructure Guide (SSG 16) constitutes a “Road-map” to apply the entire set of IAEA safety principles and requirements progressively during Phases 1, 2 and 3 of the implementation of a nuclear power programme.
What is self-assessment objective:

• a learning and investigation process to review the EPR current status of an organisation, its processes and performance against predefined criteria in order to identify areas for improvement of its efficiency and effectiveness

• an opportunity to develop safety culture across the involved organisations

• an integral part of the development of organizations aiming at excellence

• resource intensive activity which request a strong commitment

• assess the current situation and progress made to build up the safety infrastructure for an EPR of nuclear power programme

• create a common understanding among stakeholders of the progress made in the development of the safety infrastructure

• identify gaps between the current situation and expected status of EPR, and list areas where improvement is needed

• take appropriate actions to strengthen the current EPR if necessary, in order to comply with standards

• Progress made during a period can be measured by repeating the self-assessment
Ready to make a decision on whether or not to introduce nuclear power

Phase 1
1 to 3 years
- Initial site survey
- Environmental impact assessment
- Establishing the basic regulatory framework

Phase 2
3 to 7 years
- Issuance of the nuclear law
- Issuance of safety requirements needed for bid specification
- Safety evaluation of the bids

Phase 3
7 to 10 years
- Contract
- Application for construction licence
- Issuance of the construction licence
- Preparation of safety documentation
- Assessment by the regulatory body
- Site preparation
- First concrete
- Fuel delivery
- Construction phase

Ready to invite bids

Ready to commission and operate the first NPP
The Safety Infrastructure

Section 2: General Safety Requirements

20 Elements Of The Safety Infrastructure (Number In The Long-term Structure set in the Guidance)

<table>
<thead>
<tr>
<th>Number</th>
<th>Requirement</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National policy and strategy</td>
<td>GSR Part 1 / GSR Part 1</td>
</tr>
<tr>
<td>2</td>
<td>Global nuclear safety regime</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Legal framework</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Regulatory framework</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transparency and openness</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Funding and financing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>External support organizations and contractors</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Leadership and management for safety</td>
<td>GS-R-3 / GSR Part 2</td>
</tr>
<tr>
<td>9</td>
<td>Human resources development</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Research for safety and regulatory purposes</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Radiation protection Current BSS</td>
<td>GSR Part 3 Interim 2011 / GSR Part 3</td>
</tr>
<tr>
<td>12</td>
<td>Safety assessment</td>
<td>GSR Part 4/GSR Part 4</td>
</tr>
<tr>
<td>13</td>
<td>Safety of radioactive waste, spent fuel management and decommissioning</td>
<td>GSR Part 5 WS-R-5 / GSR Part 5 GSR Part 6</td>
</tr>
<tr>
<td>14</td>
<td>Emergency preparedness and response (ACTION 133 – 145)</td>
<td>GS-R-2 / GSR Part 7</td>
</tr>
<tr>
<td>15</td>
<td>Operating organization</td>
<td>NS-R-2 (being revised) / SSR 2/2</td>
</tr>
<tr>
<td>16</td>
<td>Site survey, site selection and evaluation</td>
<td>NS-R-3 / SSR 1</td>
</tr>
<tr>
<td>17</td>
<td>Design safety</td>
<td>NS-R-1 (being revised) / SSR 2/1</td>
</tr>
<tr>
<td>18</td>
<td>Preparation for commissioning</td>
<td>NS-R-2 (being revised) / SSR 2/2</td>
</tr>
<tr>
<td>19</td>
<td>Transport safety</td>
<td>TS-R-1 / SSR 6</td>
</tr>
<tr>
<td>20</td>
<td>Interfaces with nuclear security</td>
<td>GS-R Part 1 / GSR Part 1</td>
</tr>
</tbody>
</table>
Ready to make a decision on whether or not to introduce nuclear power

Phase 1
1~3 years

- Appraisal of national Frame work for EPR
- Ready to strat establishment / extension of EPR capabilities

Phase 2
3~7 years

- Issuance of regulation on EPR
- Ready to strat development of EPR for 1-st NPP

Phase 3
7~10 years

- Fuel delivery
- Ready to combat I and II category of threats
- Issuance of on-site and off-site radiation emergency plans

Ready to invite bids

Ready to commission and operate the first NPP
Article 9 stated that Site Evaluation Report (SER) should contain at least:

1. Structure of Survey-Organization;
2. Record and Report;
3. Site evaluation data, which include: site characteristic aspects (geology, seismology, meteorology etc.), and demography, as well as preliminary feasibility study dealing with emergency response plan.

Article 15, Commissioning License

1. Technical requirement:
 a. Commissioning program;
 b. Construction report;
 c. Security and safeguards plan;
 d. Nuclear emergency plan.
 f. Financial assurance for third party liability, etc.
Emergency Preparedness and Response

Phase 1
Action 133 – 134 of SSG 16
- Requirements 7 and 8 of GSR Part 1 [5];
- Requirement 43 of GSR Part 3 [8];
- Requirements 2.1–2.6 of GS-R-2 [26].

Phase 2
Action 135 - 139
- Requirements 7 and 8 of GSR Part 1 [5];
- Requirements 43–46 and Schedule IV of GSR Part 3 [8];
- Requirements 2.1–2.6, 3.1–3.20, 4.1–4.100, 5.2–5.39 of GS-R-2 [26];
- Requirement 18 of SSR-2/2 [17];
- Requirements 304 and 305 of TS-R-1 [32].

Phase 3
Action 140 - 145
- Requirements 7 and 8 of GSR Part 1 [5];
- Requirements 43–46 and Schedule IV of GSR Part 3 [8];
- Requirements 2.1–2.6, 3.1–3.20, 4.1–4.100, 5.2–5.39 of GS-R-2 [26];
- Requirement 18 of SSR-2/2 [17];
- Requirements 304 and 305 of TS-R-1 [32].

- Basic legislation and regulations for emergency planning;
- Threat assessment;
- Emergency response plans, procedures and concepts of operations;
- Procedures for protecting emergency workers;
- Demographic characteristics of the site or sites selected;
- Procedures for provisions for public notification, information and instruction;
- Procedures for the implementation of urgent protective actions;
- Procedures for medical response;
- Procedures for the implementation of longer term protective actions;
- Procedures for dealing with non-radiological consequences.
EPR Status - Indonesia

Activities have done: “Gap Analysis”

- Basic legislation and regulations for emergency planning;
- Threat assessment;
- Emergency response plans, procedures and concepts of operations;
- Procedures for protecting emergency workers;
- Procedures for medical response;
- Procedures for dealing with non-radiological consequences.

Progress Activities Not Yet Done “Challenges”

- Procedures for provisions for public notification, information and instruction;
- Demographic characteristics of the NPP site or sites selected;
- Procedures for the implementation of urgent protective actions NPP;
- Procedures for the implementation of longer term protective actions NPP;
- Install Radiological (online) monitoring system, outer part the country.
SITE STUDY NPP
NUCLEAR EMERGENCY REGULATORY HIERARCHY

Chairman Decree
- ACT No.10/1997 Nuclear Energy
- GR
- ACT
- IMPLEMENTING REGULATION

GUIDELINES / Work Instructions Emergency

Republic of Indonesia
GUIDELINES / Work Instructions
1. Provision of Nuclear Emergency Preparedness on Facility Level;
2. Guides for Emergency Response Plan;
3. Guides for Nuclear Emergency Response for Reactor Accident;
4. Guides for Radiological Emergency in the case of Industrial/Radiation Facilities Accidents;
5. Guides for Nuclear or Radiological Emergency Monitoring

1. Provision of BAPETEN Nuclear Emergency Response Unit;
2. Guides for BAPETEN Nuclear Emergency Response Procedure;
3. Guides for Radiological Monitoring;
4. Guides for Investigation;
5. Guides for Managing, Developing Training of Emergency Response Program;

1. Guides for National Nuclear Emergency Preparedness;
2. Guides for Diagnostic and Medical Response for Radiation Victims;
3. Guides for Medical Response Plan for Radiological Emergency;
4. Guides for Respond of Nuclear or Radiological Emergency.

EXERCISE
Harmonizing - REGULATION

Electricity Regulation

• Act No. 30/2007 concerning on Energy (incl. NPP 3%~7 units).

BNPB (National Disaster Management Agency)

• Act No. 24, 2007 on National Disaster Countermeasure (coping all natural hazards, including nuclear and other tech. application).

OTDNN (National Nuclear Emergency Preparedness Structure ➔ Coordination task force)

BAPETEN (Nuclear Energy Regulatory Agency)

Act No. 10, 1997 on Nuclear Energy, establishing BAPETEN and BATAN.
Obligations and responsibilities of licensee shall have the Emergency Response Plan to prevent potential hazards from the anticipated radiation accident during nuclear or radiological emergency is required by following regulation:

- GR No.54/2012 on Safety and Security of Nuclear Installation.
- GR No.33/2007 on Safety of Ionizing Radiation Utilization and Security of Radioactive Sources.
- GR No.43/2006 on Licensing of Nuclear Reactor
- GR No.26/2002 on The Safe Transportation of Radioactive Materials
- GR No.27/2002 on Radioactive Waste Management
- CD No. 01/2010 on Nuclear Emergency Preparedness and Response.
- CD No. 8/2012 on Preparation of Safety Assessment Report of Non-Power Reactor
National Nuclear Emergency Preparedness System *(Ref. GR 54/2012)*

Preparedness is conducted to ensure that the arrangements for nuclear emergency response are available: on the facility, local government, and national levels.

INFRASTRUCTURE:

- organization; coordination; facility and equipment; procedures; and exercises & drills program

RESPONSE FUNCTIONS:

- identification, notification and activation; mitigatory action; urgent protective action; protection of emergency workers and public; and information and instruction to public.
National Nuclear Emergency Preparedness & Response System

PREPAREDNESS

Facilities level

1. The operator establishes the emergency plan on the facility level.
2. The emergency plan shall cover infrastructure elements and response functions.
3. In establishing the emergency plan, the operator:
 a) propose an emergency zone (EZ) to the local government
 b) Make coordination with the local government and the relevant organizations.
4. The operator shall conduct exercises or drills on nuclear emergency: at least once every year, and In coordination with local government: once every 2 years.

Local Government level

a. LG establishes Emergency Zone (EZ) based on the licensee proposal
b. LG establishes the emergency plan on the local government level.
c. LG conduct exercises or drills on nuclear emergency in coordination with the operator at least once every 2 years.

National level

1. The National Emergency Management Agency (NEMA) establishes national emergency plan, (NNEP);
2. The NEMA conducts exercises and drills on nuclear emergency on the national level at least once every 4 years.
3. In conducting exercises and drills on nuclear emergency, it coordinates with BAPETEN and Local Government and also involves the operator.

RESPONSE

1. In the nuclear emergency, the operator shall:
 - Conduct the nuclear emergency response; and
 - Notify the emergency and the response action to: BAPETEN; Local Government. And NEMA.

2. Human safety achieves the highest priority.

Local Government level

1. LG activates the emergency response upon the information that:
 a). an event with the dose rate of \(>5 \mu Sv/hr \) within 10 minutes that is measured at the site boundary;
 b) an abnormal radioactive release with the airborne activity concentration equivalent to the dose rate of \(5 \mu Sv/hr \) is detected at the site boundary.

National level

1. The NEMA activates the emergency response upon the information that:
 a). an event where the dose rate of \(>500 \mu Sv/hr \) within 10 minutes that is measured at the site boundary;
 b) an abnormal radioactive release where the airborne activity concentration equivalent to the dose rate of \(500 \mu Sv/hr \) is detected at the site boundary.
SKEMA PENANGGULANGAN KEDARURATAN NUKLIR NASIONAL

<table>
<thead>
<tr>
<th>PEMEGANG IZIN</th>
<th>PEMERINTAH DAERAH</th>
<th>PEMERINTAH PUSAT</th>
<th>BAPETEN</th>
<th>IAEA</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>KECELAKAAN</td>
<td>Notifikasi PEMDA</td>
<td>Dapat ditanggulangi?</td>
<td>PI Lapor</td>
<td>File</td>
<td>SELESAI</td>
</tr>
<tr>
<td></td>
<td>Aktivasi OTDND</td>
<td></td>
<td>BAPETEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapat ditanggulangi OTDND?</td>
<td></td>
<td>PI Lapor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notifikasi ke Ketua OTDNN</td>
<td>Dapat</td>
<td>BAPETEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aktivasi OTDNN</td>
<td>Dapat</td>
<td>PI Lapor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapat ditanggulangi OTDNN?</td>
<td>Tidak</td>
<td>BAPETEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapat</td>
<td></td>
<td>BAPETEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidak</td>
<td></td>
<td>BAPETEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pernyataan Kecelakaan Nuklir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eskalasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 μSv/jam, 10 menit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pernyataan Kecelakaan Nuklir

Deklarasi Kecelakaan Nuklir/Radiasi

Rekomendasi PI

Bantuan

IAEA

Rekomendasi PRN
<table>
<thead>
<tr>
<th>Year</th>
<th>Exercise / Drill Level</th>
<th>Scenario</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>National Field Exercise</td>
<td>“Radiological Emergency Response to a Dirty Bomb (RDD)”. Attended by the IAEA.</td>
<td>Kemayoran, Jakarta</td>
</tr>
<tr>
<td>2007</td>
<td>National Table Top Exercise</td>
<td>“Severe accident at BATAN Multi Purpose Reactor MPR-30”, joint ConvEx – IAEA</td>
<td>Serpong – Tangerang</td>
</tr>
<tr>
<td>2008</td>
<td>National Field Exercise</td>
<td>“Radiological Emergency Response to a Transportation Accident”.</td>
<td>Yogyakarta</td>
</tr>
<tr>
<td>2009</td>
<td>National Table Top Exercise</td>
<td>“Severe accident at BATAN Reactor Bandung 2 MWth”.</td>
<td>Bandung</td>
</tr>
<tr>
<td>2010</td>
<td>National Field Exercise</td>
<td>“Nuclear Emergency in RSG-30 MW Reactor”</td>
<td>Serpong-Tangerang</td>
</tr>
<tr>
<td>2011</td>
<td>National Field Exercise</td>
<td>“Radiological Emergency Response to Sea Transportation Accident”</td>
<td>Seaport of Surabaya</td>
</tr>
<tr>
<td>2012</td>
<td>Executive meeting</td>
<td>Coordination Meeting to all government institution, Universities, other private entities</td>
<td>Jakarta</td>
</tr>
<tr>
<td>2013</td>
<td>Field exercise</td>
<td>Response Force activities due to Sabotage Security event (attacked RSG-30MW).</td>
<td>Serpong - Tangerang</td>
</tr>
<tr>
<td>2013</td>
<td>National Field Exercise</td>
<td>“Radiological Emergency Response to a Transportation Accident”.</td>
<td>Bandung</td>
</tr>
</tbody>
</table>
RDD scenario, 2005

Facilities Nuclear Emergency, 2010

Sea Transporation accident, 2011

Land Transporation Accident scenario, 2008
Self-Assessment Check Chart, as August 2012

Requirements for infrastructure

- Logistical support and facilities
- Plans and procedures
- Training, drills and exercises
- Mitigating the non-radiological consequences
- Taking agricultural countermeasures
- Keeping the public informed
- Managing the medical response
- Assessing the initial phase
- Protecting emergency workers
- Providing information and issuing instructions and warnings to the public

General requirements

- Basic responsibilities
- Assessment of threats
- Establishing emergency management and operations
- Identifying, notifying and activating
- Taking mitigatory actions
- Taking urgent protective actions
- Quality assurance programme
- Plans and procedures
- Logistical support and facilities
- Training, drills and exercises
- Mitigating the non-radiological consequences
- Taking agricultural countermeasures
- Keeping the public informed
- Managing the medical response
- Assessing the initial phase
- Protecting emergency workers
- Providing information and issuing instructions and warnings to the public

Requirements for infrastructure

- Logistical support and facilities
- Plans and procedures
- Training, drills and exercises
- Mitigating the non-radiological consequences
- Taking agricultural countermeasures
- Keeping the public informed
- Managing the medical response
- Assessing the initial phase
- Protecting emergency workers
- Providing information and issuing instructions and warnings to the public
14 Categories Chart (ISE per August 2012)
Self-Assessment Check Chart, as August 2013

Requirements for infrastructure
- Quality assurance programme
- Training, drills and exercises
- Logistical support and facilities
- Plans and procedures
- Mitigating the non-radiological consequences
- Taking agricultural countermeasures
- Keeping the public informed
- Managing the medical response
- Assessing the initial phase
- Protecting emergency workers
- Providing information and issuing instructions and warnings to the public

General requirements
- Basic responsibilities
- Assessment of threats
- Establishing emergency management and operations
- Identifying, notifying and activating

Functional requirements
- Taking mitigatory actions
- Taking urgent protective actions
- Providing information and issuing instructions and warnings to the public
14 Categories Chart (ISE per May 2013)

Functional Requirements

General Requirements

Series 1
RESPONSE OF FUKUSHIMA ACCIDENT

On March 15, 2011, Chairman of BAPETEN ordered to conduct a coordination response with various ministries, consist of: Ministry of Health, Ministry of Agriculture, Ministry of Foreign Affairs, BAPETEN, BATAN (National Nuclear Energy Agency), BPOM (Food and Drug Regulatory Agency), BMKG (Meteorology Agency), and Custom Agency.

This coordination meeting recommend two response action:
1. International response action, and
2. Domestic/national response action
- Government sent a SAR-Rescue team to help the Embassy of Indonesia in Tokyo in order to evacuate Indonesia citizen stay in around Tokyo area (such as temporary resident, students, etc).

- Recorded more than 200 Indonesian citizen, some of them decide still stay and some of them return back to Indonesia.

- One BAPETEN staff be a member to Investigation Response Team (representing IAEA response team).
RESPONSE OF FUKUSHIMA ACCIDENT
(National Response Activities)

Provided current status information of Fukushima accident to the public through BAPETENs website.

Public information through media TV (either live and/or just running text)
Some peoples ask to BAPETEN/BATAN office need clarify the condition related to Fukushima accident.

Response includes:
- Conducted survey ensuring whether there is possibility of radiation contamination on civil aviation,
- Conducted survey measuring sample of commodity, such as foodstuff fresh and canned, chemical agent, machinery and other goods) transported from Japan enter into Indonesian territory, and
- Conducted measurement of radiation or contamination level in environment (air and sea water) in the north-eastern region of Indonesia
RESPONSE OF FUKUSHIMA ACCIDENT
(National Response Activities)

Result showed:

1. No environment radiological contamination (air and sea water),
2. No radiological contamination on airplanes and ships which arrived at Indonesian territory.
3. No evidence contamination on imported commodity (such as foodstuff- fresh fruit and fish and canned, chemical agent, machinery and other goods).
4. There were evidence of 5 citizens of Indonesia which arrived by airplanes were detected with extremely low level contamination on their clothes and baggages (~ 0.77 Bq/cm2).

Ref. Decree of MOH, No. 1031/Menkes/Per/V/2011, for example for Baby food C-137 < 50 Bq/kg, Milk Cs-137 < 100 Bq/kg, etc.)
Republic of Indonesia
RESPONSE TO

BALI Airport

FUKUSHIMA

BONTANG Seaport

SOETA Airport
Conclusion

1. **EPR arrangements and capabilities are an important part of the national safety infrastructure. Developing and extending the main elements will lead to a robust EPR program.**

2. **Indonesia has identified the gap between the existing EPR system and IAEA guides, therefore it as priority challenges to upgrade consistently.**
 a. Harmonized and maintaining the contingency plan in all facilities, local and national level.
 b. Regular exercise /drill.

3. **Lesson learned from the Fukushima:**
 a. Coordination among national institutions should be optimized based on existing structure and capability all stakeholder.
 b. As regionally perspective, the availability such as a Capacity Building Center (CBC) and a network among regional counties to enhance capacity building and to share information of nuclear accident is become priority of action. This effort should be a part of our broader efforts to strengthen nuclear EPR in the future.
Thank You
Wassalam

• Appreciated for Any Comments and any further discussion.
National Activities in EPR

1. The Make of National Nuclear Emergency Contingency Plan, 2012-1013

2. Workshop on Emergency Preparedness of Nuclear Installation, Preparedness against Accidental Dispersion on Radioactive Material from Damaged Nuclear Installation, Serpong, 4-6 March 2013

3. Workshop on Radiation Emergency Preparedness & Response to Stakeholders outside BATAN, BATAN Serpong, 4-5 Juni 2013
National Activities in EPR

4. CBRN Terorism Training, Serpong, BATAN Serpong, 14-23 April 2013

6. Training on Radiological Emergency Preparedness and Response for First Responder, BATAN Bandung, 26-30 August 2013
7. FNCA, The 5th Meeting of “Study Panel on the Approaches toward Infrastructure Development for Nuclear Power”, Tokyo, Japan, September (?) 2013

8. ANSN Workshop on Preparation, Conduct and Evaluation of Nuclear Emergency Preparedness and Response Exercises, Serpong, 23-27 September 2013

National Activities in EPR

11. Training on Emergency Preparedness and Response for Off-site Consequences, 3-6 June 2014

Proposed National Activities in EPR

• Workshop on National Nuclear Emergency Plan for Decision Makers
 – Goals: MoU among stakeholders on national nuclear emergency plan.

→ Needs IAEA experts to convince them 😊

• Workshop on National Nuclear Emergency Plan for Emergency Workers
National Nuclear Emergency Plan Milestones

Continuity Plan 2013

Procedures 2014

Training Drill Exercises 2015

National Emergency Plan 2015