

ASME PVP2014-28476

Nuclear Power Plant Issues in IAEA Draft Technical Guidelines on Fluid-Structure Interactions

2014/07/22

Hitachi, Ltd.

Consultant

Osaka Sangyo Univ.

Shiro Takahashi

Kunio Hasegawa

Tomomichi Nakamura

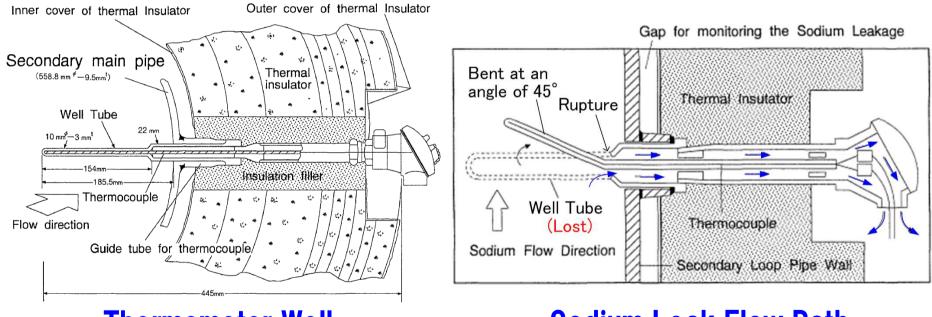
1 Plant Issues in IAEA Technical Guidelines on FSIs (1) HITACHI Inspire the Next

IAEA draft technical guidelines on FSIs include plant issues.

In order to avoid future FSI problems, it is important to learn from past FSI events that have occurred at actual plants.

Contents of IAEA Draft Technical Guidelines

- 1. INTRODUCTION
- 2. GENERAL DESCRIPTION OF FLUID STRUCTURE INTERACTIONS
- 3. DESIGN AND MAINTENANCE AGAINST FLUID STRUCTURE INTERACTIONS
 - 3.1 Flow-induced vibration in nuclear components
 - 3.2 Fuel assemblies and heat transfer tubes
 - 3.3 Thermometer wells
 - 3.4 RPV internal components
 - 3.5 Pipes
 - 3.6 Valves
- 4. PLANT ISSUES
 - 4.1 Flow-induced vibration
 - 4.2 Water hammer
 - 4.3 Acoustic fatigue
 - 4.4 Vibration by overflow weir
- 5. COMPUTATIONAL METHODS
- 6. CONCLUSIONS


2 Plant Issues in IAEA Draft Technical Guidelines on FSIS CHI

Tendencies have been seen in plant issues on FSIs.

- (1) Many incidents were caused by vibration which were significantly increased by self-excited vibration when fluid velocity exceeded the critical velocity.
- (2) Failures of components were often caused by a combination of FSIs and other factors, such as welding defects, stress concentration, support wear and stress corrosion cracking (SCC).
- (3) Many events occurred during pre-operation and start-up tests in which a transient operation was implemented. It is possible that intense fluctuating pressure occurred due to valve closures, and pump and air blower start-ups.
- (4) Changes Modification of the design and operating conditions for rationalization and performance upgrades often caused FSI problems.
- (5) Acoustic waves were propagated over long distances and components were subsequently damaged in a wide range of systems.

3 Failure of Monju Thermometer Well (1)

A sodium leakage incident occurred due to breakage of a thermometer well in Monju.


Thermometer Well

Sodium Leak Flow Path

Reference:

A. Miyakawa, et al., 1998, "Technical committee meeting on unusual occurrences during LMFR operation," Vienna (Austria) 9-13 Nov, *IAEA-TECDOC-1180*, pp. 49-62.

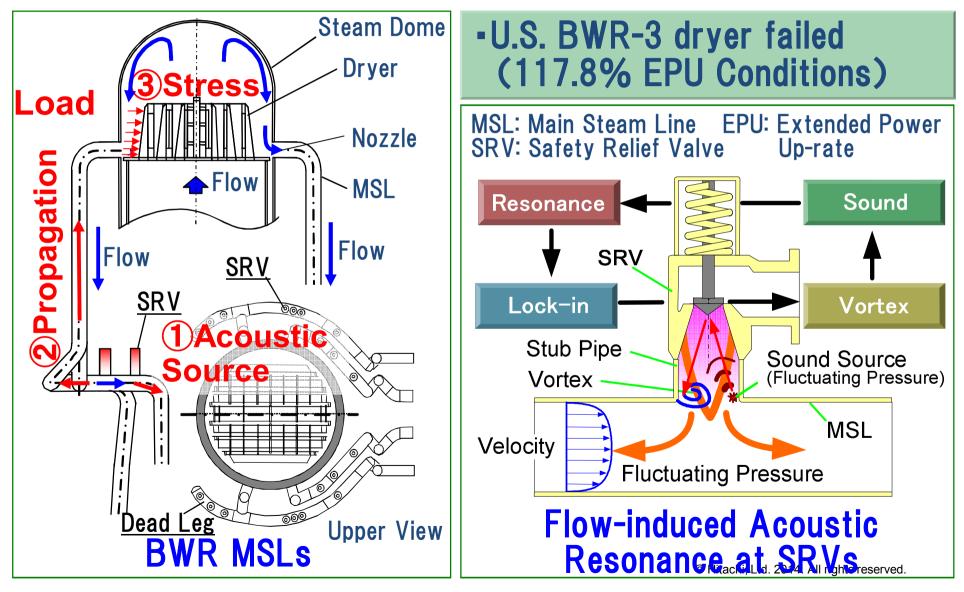
Avoiding self-excited vibration is important for guidelines.

Explanation of Vortex Shedding

Reference:

A. Miyakawa, et al., 1998, "Technical committee meeting on unusual occurrences during LMFR operation", Vienna (Austria) 9-13 Nov, IAEA-TECDOC-1180, pp. 49-62.

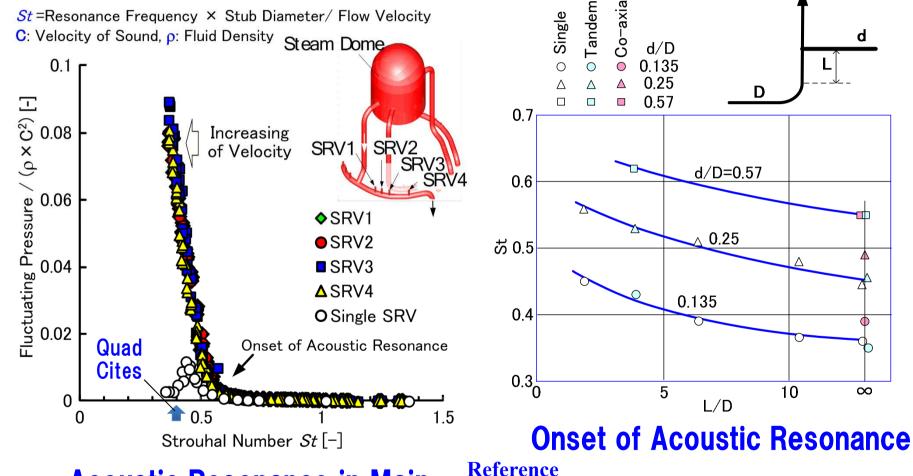
Reference:


JSME, 1998, "Guideline for Evaluation of Flow-Induced Vibration of a Cylindrical Structure in a Pipe", JSMES012 pp. A25. © Hitachi, Ltd. 2014. All rights reserved.

Lock-in Synchronization

5 Dryer Failure at Quad Cites Unit 2 (1)

HITACHI Inspire the Next

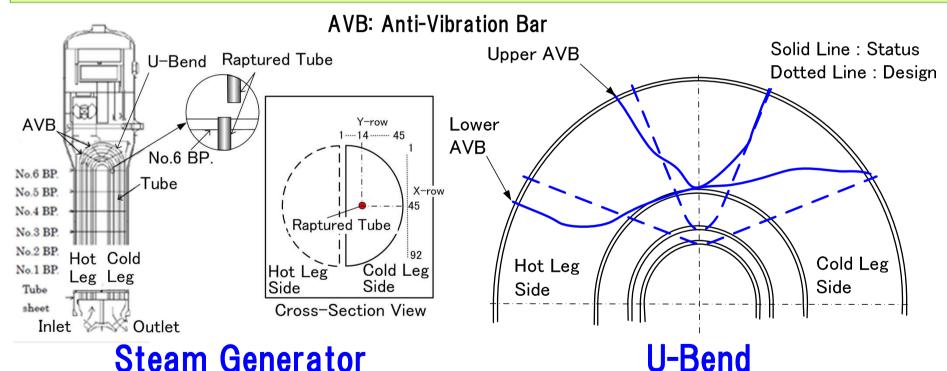

Cause of dryer failure was fluctuating pressure at SRVs.

6 Dryer Failure at Quad Cites Unit 2 (2)

HITACHI Inspire the Next

Evaluation of acoustic resonance is included in guidelines.

Acoustic Resonance in Main Steam Line & Dryer (Air Test)


S. Ziada and S. Shine, "Strouhal Number of Flow-Excited Acoustic Resonance of Closed Side Branches", *J. Fluids and Structures*, Vol. 13, pp.127-142, 1999 © Hitachi, Ltd. 2014. All rights reserved.

7 Steam Generator Tube Failure at Mihama (1)

HITACHI Inspire the Next

Main cause of SG failure was fluid elastic vibration.

- Leakage from steam generator in Mihama Unit-2 in Japan.
- A tube was broken at the bottom of the upper U-bend.
- The tube had not been supported at the U-bend with an AVB.

Reference

Agency of Natural Resources and Energy, 1991, "Final Report on the Steam Generator Tube Break at Mihama Unit No.2 of Kansai Electric Power Co., Inc. That Occurred on February 9, 1991", Ministry of International Trade and Industry, Japan © Hitachi, Ltd. 2014. All rights reserved.

I Unknown flow distribution was evaluated by peaking factor.

Fluid-Elastic Stability Margin: FSM

$$FSM = \frac{V_c}{V_e}$$

Effective Flow Velocity: Ve

$$V_{e}^{2} = \frac{\frac{1}{\rho} \int_{0}^{L} \rho(x) V^{2}(x) \phi^{2}(x) dx}{\frac{1}{m} \int_{0}^{L} m(x) \phi^{2}(x) dx}$$

- m mass per unit length [kg/m]
- ρ fluid density [kg/m³] ϕ vibration mode [-]

Critical Flow Velocity: Vc

$$\frac{V_C}{fD} = C \cdot \left[\frac{m(2\pi\zeta)}{\rho D^2}\right]^a$$

D outer diameter of tube [m] f natural frequency of tube [m] ζ damping ratio[-]

Consideration of Flow Peaking Factor

STEP 1

-Check Vc in the case of row 9 in North Anna considering its irregular AVB pattern.

STEP 3

-Estimate FSM of plant.

Water hammer occurreds due to valve operation, pump sudden start-up and shutdown.

Туре	Date	Components	Event	Category	Cause
Oconee Unit 2	July 1996	Moisture separator re- heater drain line	Pipe rupture	Condensation induced water hammer	Workers opened valve earlier than planned.
Vogtle Units 1,2	Feb. 1996	Nuclear water service system	Pipe weld crack	Hydraulic transients	Impact of discharge flow from the starting pump.
H. B. Robinson Unit 2	Oct. 1996	Cold-leg accumulator injection line	Damage to a seismic restraint	Hydraulic transients	Opening the accumulator isolation valve
Waterford Unit 3	Dec. 1996	Low pressure safety injection system	Water leaked from safety injection tank	Hydraulic transients	Presence of some volume of nitrogen gas in the pump discharge line

Reference

U. S. NRC Information Notice No.91-95: Supplement: Water Hammer Events Since 1991 © Hitachi, Ltd. 2014. All rights reserved.

9

Evaluation of BWR internals are included in guidelines.

Dryer Sparger Jet Core Pump (Fuel Bundle) CRGT **CRDH** BWR

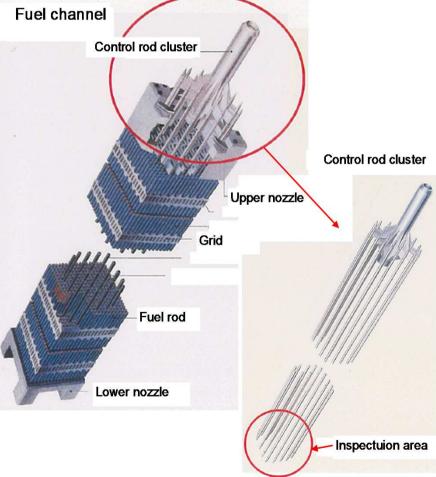
Designs of the reactor internals are for prototypes or the operating conditions are changed.

Vibration assessments:

- Measurements and inspections in actual plants
- Analyses
- Mock-up tests

The following are important internals regarding FSIs.

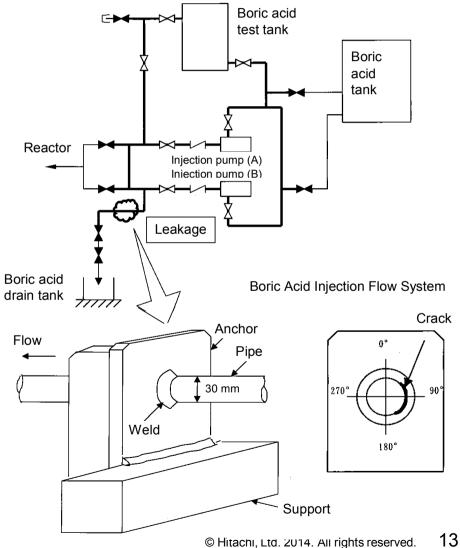
- (1) Jet pumps
- (2) Internals in lower plenum
 - Control rod drive housings (CRDH)
 - Control rod guide tubes (CRGT)
 - Instrumentation tubes (ICMGT)
- (3) Spargers and piping
- (4) Steam dryers and their assemblies
- (5) BWR fuel bundle


Designs of reactor internals or operating conditions are changed.

- In the design stage, the margins of safety for abnormal vibrations such as vortex shedding lock-in or self-excited vibration are initially checked.
- •Prediction of the vibration response due to flow turbulence and pump pulsation is conducted by analysis and/or flow testing.
- •During the pre-operational testing of in actual plants, assessment with vibration measurements is required for a new design plant (prototype) on the first of a kind of engineering (FOAKE) of a new design (prototype).
- -Inspections after pre-operational testing are conducted as the final check.
- The following items are important for assessment of PWR internals regarding FSIs.
- A) Flow-induced vibration in downcomer region of reactor
- B) Excitation test by using a scale model of the reactor internals
- C) Eigen value analysis
- D) Flow-induced vibration test using a scale model
- E) Verification of turbulence-induced vibration analysis method
- F) Evaluation method for the pressure fluctuation caused by a reactor coolant pump
- G) Vibration analysis for reactor internals of a prototype
- H) Vibration measurement for reactor internals of a prototype
- I) Flow induced vibration for reactor control rods

12 Plant Issues (1) Control Rod Cluster

Tip of the CR cluster contacted with CR guide tube by small vibration due to water flow.


		Fuel channel
Components	Control rod (CR) cluster in	Co
•	fuel channel.	_
Plant	Genkai-4 (PWR)	
Date	September 19, 2010	
Plant	Periodic in-service	3
condition	inspection	
Event	Wear at the tip of the	
Lvent	control rod cluster	
Reference	NUCIA, 2010-Kyusyu-	
Relefence	M001 Rev. 1	Lov

13 Plant Issues (2) Pump and Piping System

The drain pipe was vibrated by pulse pressure and pump body motion.

Component	Drain pipe for boric acid injection system
Plant	Kashiwazaki-Kariwa -1 (BWR)
Date	September 30, 2003
Plant condition	Periodic in-service inspection
Event	Leakage at welded joint of boric acid drain pipe
Reference	NUCIA, 2003-Tokyo- M020

14 Plant Issues (3) Pump and Piping System

A LANGE DOV L OWARD DOV N

Vent pipe resonated with random vibration during minimum flow operation.

		←Inside PCV Outside PCV→
		Turbine Regenerated heat exchanger Demineralization
Component	Gateway Bent Valve at High Pressure Injection Pump in PWR	SG Primary pump Seal water heat exchanger Horizand Boric acid tank
Plant	Ooi-2 (PWR)	Reactor vessel
Date	March 24, 1998	High pressure injection Boric acid pump pump pump
Plant condition	Rated load operation	Elexible hose
Event	Crack was observed at welded joint.	250 mm
Reference	NUCIA, 1998	126 mm
		Leakage

HITACHI Inspire the Next

PLR pump pulsation resonated with natural frequency of pipes.

Component	Jet pump (JP) instrumentation pipe	Holddown Elbow
Plant	Tokai-2 (BWR)	
Date	Nov. 22, 2006	Restrainer mouth
Plant	Flow control valve was at	
condition	low flow gate opening	Instrumentation Pipe
	and PLR pumps were at	Diffuser
	high speed.	
Event	Ruptured pipes were	
	observed at welded	
	location by inspection.	
Reference	NUCIA, 2006-Genden-	Instrumentation
	M016	
		Overview of JP

PLR: Primary Loop Recirculation

This paper introduced nuclear power plant issues described in IAEA draft technical guidelines.

✓ There have been many problems caused by FSIs in nuclear power plants. In order to avoid FSI problems issues for newly designed components, it is important to learn from past FSI events.

✓ IAEA draft technical guidelines provide the design guide to predict the critical velocity at the onset of resonance . The critical velocity for the thermometer well, BWR dryer, PWR steam generator tube and so on. will be shown in The IAEA technical guidelines is also taking included past FSI events into consideration.

 \checkmark If the designs of the reactor internals are for prototypes or the operating conditions are changed, new analyses, tests and site measurements should be used for evaluation of FSIs. It is also important for the technical guidelines to show how to implement the analyses, tests and site measurements.

THE END

Nuclear Power Plant Issues in IAEA Technical Guidelines on Fluid-Structure Interactions

2014/07/20

Hitachi, Ltd.,

Shiro Takahashi

HITACHI Inspire the Next

19 Plant Issues (2) Cluster Guide Tube

29 mm

24 mm

Pin hole

100 mm

Stopper pin was vibrated by flow of primary coolant water and wear had occurred.

Component	Cluster guide tube	PWR Control rod cluster guide
Plant	Tomari -1 (PWR)	
Date	January 22, 2010	
Plant	Periodic in-service	Cluster guide
condition	inspection	Upper plate
Event	Wear by flow of primary	Fuel assembly
Event	coolant water	
Reference	NUCIA, 2009-Hokaido-	THE STATE
	M009	

Pir

52 mm

Pin support

Guide tube

bottom plate

Wear

20 Plant Issues (4) Pump and Piping System

Ejection

Eigen frequency for flashing pipe almost coincided with pulsation of the pump.

Component	Pump in PWR reactor auxiliary cooling water system	Pipe
Plant	Ooi-3 (PWR)	Welge / E
Date	February 15, 2002	
Plant	Rated load operation	S 270° Inlet
condition		Reactor Auxiliary Cooli Water Pump
Event	Leakage at welded point	
	of flashing pipe	
Reference	NUCIA, 2001-Kansai-	
	M009	Atrificial cut
		Sckech of Fracture Surface