Dose Assessment in Emergency Situation

KINS-IAEA Workshop on Radiation Safety and Emergency Response in the Medical or Industrial Use of Radiation

June 12, 2019

HYUNGJOON YU

hjryu@kins.re.kr

Dose Assessment Overview

Radiological Dose Assessment

- estimating dose already received or anticipated dose to members of the public and emergency workers following a radiological incident
- These estimations can help guide protective actions or remediation
- Dose estimates may only be a part of comprehensive emergency management
- A body can receive an external and/or internal dose from a variety of isotopes and types of radiation

This Lecture

- provides generic procedures for estimating the dose to emergency worker and/or public by radiological assessor
- is consistent with the IAEA-TECDOC-1162(2000)

 $E \neq mc^2$

Dose Assessment Overview

Total Effective Dose

- Estimation of Total Effective Dose is generally the goal
- Total effective dose can be calculated by taking into account all dominant routes
- General dose equation: $E_T = E_{ext} + E_{inh} + E_{ing}$
 - $E_T = Total effective dose$
 - $E_{ext} = Effective dose from external radiation$
 - E_{inh} = Committed effective dose from inhalation
 - $E_{ing} = Committed effective dose from ingestion$

Assemble and assess the dosimetric information directly available

- direct readings from EPDs, dose assessments from PRD such as film badges or TLDs
- inhalation may have occurred, nose blows should be taken using material suitable for assessing the activity removed
- ingestion may have occurred, the need to collect urine and fecal samples should be considered;
- Inhalation & ingestion case: whole body or thyroid monitoring should be considered
- if total effective dose limit may have been exceeded, a medical responder should be consulted about obtaining a blood sample for cytogenetic analysis.

Dose from external exposure (point source)

Effective Dose

- effective dose at a certain distance from a point source:
 - E_{ext} = Effective dose from a point source [mSv]
 - A = Source activity [kBq]
 - $T_{e} = Exposure duration [h]$
 - $CF_6 = Conversion factor [(mSv/h)/(kBq/m^2)]$
 - X = Distance from the point source [m]
 - $d_{1/2} = Half value layer [cm]$
 - d = Shielding thickness [cm]

Dose rates

- Absorbed dose rate in air at a certain distance from a point source:
 - D = Dose rate [mGy/h]
 - $CF_7 = Conversion factor [(mGy/h)/(kBq/m^2)]$
 - A = Source activity [kBq]
 - X = Distance from the point source [m]
 - $d_{1/2} = Half value layer [cm]$
 - d = Shielding thickness [cm]

$$\dot{D} = \frac{A \cdot CF_7 \cdot (0.5)^{\frac{d}{d_{1/2}}}}{X^2}$$

$$E_{ext} = \frac{A \cdot CF_6 \cdot T_e \cdot (0.5)^{\frac{d}{d_{1/2}}}}{X^2}$$

Dose from external exposure (line source)

Effective Dose

- effective dose from a line(pipe) source:
 - X = Distance from the line source (pipe) [m]
 - E_{ext} = Effective dose [mSv]
 - $CF_6 = Conversion factor [(mSv/h)/(kBq)]$
 - $A_I = Activity per 1 m [Bq/m]$
 - $T_e = Time of exposure [h]$

 $\pi \cdot CF_6 \cdot A_1 \cdot T_e$ $E_{ext} =$

Dose rates

- Absorbed dose rate in air at a distance x from a line source (pipe):
 - D = Dose rate [mGy/h]
 - CF₇ = Conversion factor [(mGy/h)/(kBq)]
 - $A_l = Activity per 1 m [Bq/m]$
 - X = Distance from the line source (pipe) [m]

$$\dot{\mathbf{D}} = \frac{\pi \cdot \mathbf{CF}_7 \cdot \mathbf{A}_1}{\mathbf{X}}$$

Dose from external exposure (disk source)

Effective Dose

- effective dose from disk source (spill):
 - X = Distance from the centre of the disk [m]
 - R = Disk(spill) radius [m]
 - $E_{ext} = Effective dose [mSv]$
 - $CF_6 = Conversion factor [(mSv/h)/(kBq)]$
 - $A_s = Activity$ of the spill [Bq/m²]
 - $T_e = Time of exposure [h]$

$$\mathbf{E}_{\mathsf{ext}} = 2\pi \cdot \mathbf{CF}_6 \cdot \mathbf{A}_{\mathsf{s}} \cdot \mathbf{T}_{\mathsf{e}} \cdot \mathsf{ln} \frac{\mathbf{X}^2 + \mathbf{R}^2}{\mathbf{X}^2}$$

Dose rates

- Absorbed dose rate in air at a distance x from a disk source (spill):
 - D = Dose rate [mGy/h]
 - CF₇ = Conversion factor [(mGy/h)/(kBq)]
 - $A_s = Activity$ of the spill [Bq/m²]
 - X = Distance from the centre of the disk [m]
 - R = Disk(spill) radius [m]

$$\dot{D} = 2\pi \cdot CF_7 \cdot A_s \cdot ln \frac{X^2 + R^2}{X^2}$$

Dose from internal exposure (inhalation)

Committed Effective Dose

- Committed effective dose from inhalation:
 - E_{inh} = Committed effective dose from inhalation [mSv]
 - C = Average concentration of radionuclide i in air [kBq/m³]
 - $CF_{2,i}^*$ = Conversion factor for radionuclide i
 - T_e = Time of exposure to plume [h]

*a breathing rate of 1.5 m³/h is assumed as recommended by ICRP for an adult performing light activities

Committed Equivalent Dose

- Committed equivalent dose to the thyroid from inhalation
 - H_{thv} = Committed equivalent dose to the thyroid [mSv]
 - $C = Average \ concentration \ of \ radionuclide \ i \ in \ air \ [kBq/m³]$
 - $CF_{1,i}^*$ = Thyroid conversion factor for radionuclide i
 - $T_e = Time of exposure to plume [h]$

*a breathing rate of 1.5 m³/h and 1.12 m³/h is assumed as recommended by ICRP for an adult and a 10 years old child performing light activities

$$\boldsymbol{H}_{thy} = \sum_{i=1}^{n} \overline{\boldsymbol{C}}_{a,i} \cdot \boldsymbol{C} \boldsymbol{F}_{1,i} \cdot \boldsymbol{T}_{e}$$

Dose from internal exposure (ingestion)

Committed Effective Dose

- Committed effective dose from consumption of food or soil:
 - *E_{ing}* = Committed effective dose from ingestion of food f [mSv]
 - $C_{f,i}$ = Concentration of radionuclide i in food f after processing or in soil [kBq/kg]
 - U_f^* = The mass of food f consumed by the population of interest per day [kg/d or L/d]
 - $CF_{5,i}$ = Conversion factor committed effective dose from ingestion per unit intake of radionuclide I [mSv/kBq]
 - *DI*_{f,i} = Days of intake[d]; the period food is assumed to be consumed;

*For soil ingestion, maximum adult ingestion is about 100 mg/d with an average of about 25 mg/d maximum consumption for a child is 500 mg/d with an average of 100 mg/d

*if $T_{1/2} > 21$ days use 30 days,

if $T_{1/2}$ < 21 days use the mean life (T) of the radionuclide $T_m = T_{1/2} \times 1.44$

$$\mathbf{E}_{ing} = \sum_{i=1}^{n} \mathbf{C}_{f,i} \cdot \mathbf{U}_{f} \cdot \mathbf{DI}_{f,i} \cdot \mathbf{CF}_{5,i}$$

Effective Dose from exposure to ground contamination

- includes external dose and committed dose from inhalation (resuspension) resulting from remaining on contaminated ground for the period of concern
- large-scale contamination is often of more concern than discreet sources
- Calculation of Effective Dose is based on what you know about the contamination
- Obtain radionuclide concentrations on ground and ambient dose rate
- Contamination could be single isotope or a mixture
- Deposition is not uniform
 - Wind-driven plume deposits varying amounts of contamination
 - Rain can produce heavier deposits from a plume

General Effective dose from deposition

- Based on comprehensive radionuclide concentrations on ground:
 - E_{ext} = Effective dose from deposition for the period of concern [mSv]
 - $C_{q,i}$ = Average deposition (ground) concentration of radionuclide i [kBq/m²]
 - $CF_{4,i}$ = Conversion factor [(mSv/kBq/m²)]*
 - n = Number of radionuclides

 $\cdot \frac{\sum_{i=1}^{n} C_{g,i}^{rep} \cdot CF_{4,i}}{\sum_{i=1}^{n} C_{g,i}^{rep} \cdot CF_{3,i}}$

 $E_{ext} = \dot{H}_{g}^{*}$

- CF_{4,i}: effective dose per unit deposition for radionuclide i; includes external dose and committed effective dose from inhalation due to resuspension resulting from remaining on contaminated ground for the period of concern
 - : specific for a particular time frame (first month, second month, 50 year) That is, the time of exposure is incorporated into the conversion factor
- The mix of RI could initially be determined from gamma spectroscopy. Refinement comes from sample analysis (soil, air, etc.)
- Once the mix is known at one point (isotopes and concentrations), it can be used for "representative" concentrations for calculating dose at another point.
- Based on ambient dose rate and "representative":
 - H_g^* = Ambient dose rate at 1 m above ground contamination [mSv/h]
 - $CF_{3,i}$ = Conversion factor [(mSv/h)/(kBq/m²)]
 - $CF_{4,i} = Conversion factor [(mSv/kBq/m²)];$
 - $C_{g,l}^{rep} = Representative deposition (ground) concentration of radionuclide i [kBq/m²]$

CF_{3,i} :ambient dose rate at 1 m above ground level per unit of deposition for radionuclide i

Effective dose from deposition

- If representative concentrations are known for the deposition, effective dose at any point can be calculated using the measured concentration of a single isotope at that point
- The single isotope is known as a "marker isotope"
- This technique assumes the relative concentrations remain the same everywhere in the deposition
- Based on marker radionuclide concentration levels:
 - $CF_{4,i}$ = Conversion factor [(mSv/kBq/m²)];
 - $C_{g,i}^{sam}$ = concentration of marker radionuclide *j* in depositon sample [kBq/m²]
 - $C_{g,j}^{rep} = Representative deposition (ground) concentration of marker radionuclide j [kBq/m²]$
 - $C_{q,l}^{rep} = Representative deposition (ground) concentration of radionuclide i [kBq/m²]$

$$E_{ext} = C_{g,j}^{sam} \cdot \frac{\sum_{i=1}^{n} C_{g,i}^{rep} \cdot CF_{4,i}}{C_{g,j}^{rep}}$$

Effective dose from deposition

- Adjust Effective Dose by taking into account shielding and partial occupancy
- assumes buildings(shelter) are sealed and no contamination has entered inside.
 - E_{ext}^{po} = Effective dose from deposition for the period of concern assuming shielding and partial occupancy [mSv]
 - SF = Shielding factor from measurements during occupancy
 - OF = Occupancy fraction; fraction of time in the building (default; 0.6)

 $\mathbf{E}_{\mathsf{ext}}^{\mathsf{po}} = \mathbf{E}_{\mathsf{ext}} \cdot [\mathbf{SF} \cdot \mathbf{OF} + (1 - \mathbf{OF})]$

TABLE E4.SHIELDING FACTORS FOR SURFACE DEPOSITION

Structure or location	Representative SF (a)	Representative range
1 m above an infinite smooth surface	1.0	-
1 m above ordinary ground	0.7	0.47-0.85
One and two story wood-frame house (no basement)	0.4	0.2–0.5
One and two story block and brick house (no basement)	0.2	0.04–0.4
House basement, one or two walls fully exposed - one-story, less than 1 m of basement wall exposed - two story, less than 1 m of basement wall exposed	0.1 0.05	0.03–0.15 0.03–0.07
Three or four story structures (500 to 1000 m ² per floor) ^(b) - first and second floor - basement	0.05 0.01	$\begin{array}{c} 0.01 - 0.08 \\ 0.001 - 0.07 \end{array}$
Multi-story structures (> 1000 m ² per floor) ^(b) - upper floors - basement	0.01 0.005	0.001-0.02 0.001-0.15

Dose from contamination (air)

Effective dose from air immersion

- Effective dose from external exposure to γ radiation from the plume (cloud shine)
 - $E_{ext} = Effective$ dose from external exposure due to immersion in contaminated air [mSv]
 - $C_{a,l} = Average \ concentration \ of \ radionuclide \ i \ in \ air \ [kBq/m³]$
 - $CF_{9,I}$ = Conversion factor for radionuclide i from
 - $T_e = Exposure duration [h]$

 $\mathbf{E}_{\mathsf{ext}} = \mathbf{T}_{\mathsf{e}} \cdot \sum \overline{\mathbf{C}}_{\mathsf{a},\mathsf{i}} \cdot \mathbf{C} \mathbf{F}_{\mathsf{9},\mathsf{i}}$

Figure 4. Pathways to exposure from contamination

Data Interpretation & Reporting

KINS

 $E \neq n$

- □ Keep track of calculations
- □ Know the assumptions and boundary conditions
- □ Conservative assumptions are generally used
- Remember total effective dose must be calculated (all isotopes and all pathways)
- Action decisions are generally made on the most restrictive effective dose (whole body, single organ)
- Separate calculations may need to be done for emergency workers and the public
- The use of personal protective equipment (e.g. respirators) will modify the calculations presented here

Exercise of Dose Assessment in Emergency Situation

Review of Dose Assessment

Basic concepts

Ir-192

Dose Assessment of External Exposure

- NDT(Non Destructive Test) worker has worked during 10 minutes.
- The distance between the source and worker was 5 m without any shield.
- The radioactive source was Ir-192 with 1.85 TBq.
- Calculate effective dose to worker.
- Calculate the effective dose when the 6 mm lead plate existed between them.

$$E_{ext} = \frac{A \cdot CF_6 \cdot T_e \cdot (0.5)^{\frac{d}{d_{1/2}}}}{X^2}$$

(ref. IAEA-TECDOC-1162(2000))

- Useful references of external dosimetry
 - ICRP Publication 74(1996)
 - ICRP Publication 116(2010)
 - ICRP Publication 119(2011)

Dose Assessment of Internal Exposure

- In the hospital, assessment of effective dose to the worker who products I-131 nuclear medicine should be performed.
- The results of measurement, concentration of air due to I-131 was 0.1 [kBq/m3].
- The worker used to work 2 hours a day, 5 days a week.
- ✓ Calculate annual effective dose to worker due to inhalation of I-131.

$$\mathrm{E}_{inh} = \sum_{i=1}^{n} \overline{\mathrm{C}}_{a,i} \cdot \mathrm{CF}_{2,i} \cdot \mathrm{T}_{e}$$

(ref. IAEA-TECDOC-1162(2000))

- Useful references of internal dosimetry
 - ICRP Publication 72(1995)
 - ICRP Publication 68(1994)
 - ICRP Publication 100(2006)
 - ICRP Publication 119(2011)
 - U.S. NRC Reg.Guide 1.3(1974)
 - U.S. NRC Reg.Guide 1.4(1974)

Dose Assessment for Contamination

- Due to the accident of nuclear power plant, radioactive materials were released and moved to a coastal village along the wind.
- After few weeks from the accident, in order to evaluate the annual dose to the people who live in the village what matters should be considered?

Dose Assessment for Contamination (cont.)

- After few weeks later, at some point in the village, average radiological concentration of Cs-137 in air was measured as 0.5 kBq/m³.
- Calculate an annual effective dose to person who lives in village from air immersion with concentrated by Cs-137.
 - Assume that the village people used to work outside for 8 hours a day and they are not affected from the radiation when they were inside of houses or buildings.

$$\mathbf{E}_{\mathsf{ext}} = \mathbf{T}_{\mathsf{e}} \cdot \sum_{i} \overline{\mathbf{C}}_{\mathsf{a},i} \cdot \mathbf{C} \mathbf{F}_{\mathsf{9},i}$$

(ref. IAEA-TECDOC-1162(2000))

- > Useful references of dosimetry of environmental contamination
 - U.S. EPA FGR 12(1993)
 - U.S. NRC NUREG-0017(1985)
 - U.S. NRC Reg.Guide 1.109(1977)
 - U.S. NRC Reg.Guide 1.111(1977)
 - U.S. NRC Reg.Guide 1.113(1977)
 - Nina Petoussi-Henss, et al. Phys.Med.Biol. 57, (2012)

Always we keep watching our Atomic Power

Thank You

