

United States Department of Energy National Nuclear Security Administration International Nuclear Security (INS)

Management of the Interface between Safety and Security for Research Reactors: IAEA TECDOC-1801

Joe Rivers, USA Nuclear

BACKGROUND

 Safety and security have the same objective of protecting the public, society, and the environment

• However, their measures often conflict with each other

- **O SAFETY AND SECURITY OBJECTIVES**
 - Protect people, society, and the environment
 - Acceptable consequences should be the same for both safety and security
- **O SAFETY AND SECURITY FUNDAMENTALS**
 - Legal and regulatory frameworks
 - Responsibilities for addressing safety and security measures to counter the threats/accident initiators at a research reactor fall to the license holder
 - Operators have to prevent or mitigate nuclear security or radiation incidents/accidents by using defense-in-depth which provides multiple layers protection
 - A strong safety culture and a strong security culture at the research reactor facility are indispensable

- PREVENTION OF SAFETY OR SECURITY EVENTS DEFENCE-IN-DEPTH
 - Safety and security both base defense-in-depth on providing multiple layers of protection
 - o Safety
 - Preventing deviations from normal operation
 - Controlling deviations from operational states
 - Controlling accidents within the design basis
 - Mitigating accidents and ensuring confinement of radioactive materials
 - Mitigating the logical conradiosequences of radioactive releases
 - o Security
 - Detecting a potential malicious act
 - Delaying the adversary for a sufficient period to allow for appropriate response, if necessary through external support
 - Responding to and neutralising an attack
- GRADED APPROACH

• GRADED APPROACH

- Safety requirements and security recommendations have to be applied in a way that is commensurate with the potential hazards of the facility
- Factors for safety include research reactor power and source term, fuel design and handling, amount, enrichment, and form of fissile materials, the presence of high-pressure or high-energy piping, quality of confinement, inventory of radioactive material of the facility, and proximity to population
- Security considers many of these with the addition of the categorizing nuclear and other radioactive material into protection levels depending on their attractiveness to an adversary and establishing a graded approach to sabotage by defining unacceptable radiological consequences

• SAFETY ANALYSIS

• Provides the technical basis demonstrating that a research reactor facility can be operated safely in accordance with regulatory requirements and within the legal framework of the State and is based on the analysis of a set of postulated initiating events that have been considered in the reactor design

• THREAT ASSESSMENT AND SECURITY PLAN

- The threat assessment is an evaluation of the threats based on available intelligence, law enforcement and open-source information that describes the motivation, intention and capabilities of potential adversaries
- The design, evaluation, implementation and maintenance of the facility security system are described in the facility security plan and approved by the regulatory body

SAFETY AND SECURITY MEASURES

• Safety measures and security measures must be designed and implemented such that security measures do not adversely impact safety and safety measures do not adversely impact security

• ISSUES AND CHALLENGES IN THE INTERFACE BETWEEN SAFETY AND SECURITY OF RESEARCH REACTORS

- FEATURES OF RESEARCH REACTORS AFFECTING THE SAFETY AND SECURITY INTERFACE
 - Negative Impacts
 - Relatively short operating, refueling and maintenance cycles, often with many changes in facility security configuration
 - Many operating modes for different purposes
 - Access to the reactor hall by a wide variety of people with varying trustworthiness
 - Means to manually adjust core reactivity and geometry
 - Many different parties having a a variety of interests in utilization of the facility
 - Positive Impacts
 - High reliability and redundancy of safety systems
 - Passive safety features
 - Access control measures

• ISSUES AND CHALLENGES IN THE INTERFACE BETWEEN SAFETY AND SECURITY OF RESEARCH REACTORS

- SIMILARITIES AND DIFFERENCES BETWEEN SAFETY AND SECURITY OF RESEARCH REACTORS
 - Strong focus on safety
 - Additional security concerns at research reactor
 - Safety and security both necessary, but neither sufficient on their own
- CHALLENGES TO THE SAFETY-SECURITY INTERFACE
 - Security not generally an element of the original design
 - Changes in operations and facility layout
 - The need to protect security-related information, while at the same time to share safety-related information

GENERAL CONSIDERATIONS IN THE SAFETY–SECURITY INTERFACE FOR RESEARCH REACTORS

- **O RESPONSIBILITIES FOR SAFETY AND SECURITY**
 - Role of the State
 - Role of the regulatory body
 - Role of the operating organization
- LEADERSHIP AND MANAGEMENT OF SAFETY AND SECURITY
 - Integrated management system
 - Safety culture and security culture

GENERAL CONSIDERATIONS IN THE SAFETY-SECURITY INTERFACE FOR RESEARCH REACTORS

- **OPTIMIZATION OF PROTECTION**
 - All radiation risks must be identified and assessed on a continuing basis, with a focus
 - on evolving technologies
- **OPERATING PROCEDURES**
 - Impacts of operating procedures and their modifications on both safety and security

O PREPAREDNESS AND RESPONSE

GENERAL CONSIDERATIONS IN THE SAFETY-SECURITY INTERFACE FOR RESEARCH REACTORS

- **O TRAINING OF PERSONNEL**
- ASSESSMENT OF THE INTERFACE BETWEEN SAFETY AND SECURITY
 - Periodic safety and security reviews
 - Self-Assessment, continuous improvement and feedback from operating experience

- MANAGEMENT OF THE INTERFACE BETWEEN SAFETY AND
 SECURITY DURING ALL PHASES OF RESEARCH REACTOR LIFETIME
 - o SITING
 - **o** DESIGN
 - **O CONSTRUCTION**
 - OPERATION
 - **O UTILIZATION AND MODIFICATION**
 - **O DECOMMISSIONING**
 - O EXTENDED SHUTDOWN

Questions

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.