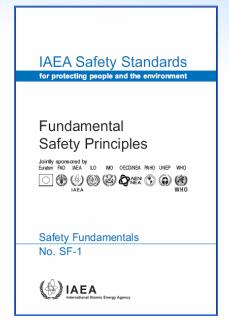


P5. Safety Goals

Workshop on Application of Level 1 Probabilistic Safety Assessment Bangkok, Thailand 5-9 September 2022

Mikhail Lankin

Safety Assessment Section Division of Nuclear Installation Safety Department of Nuclear Safety and Security International Atomic Energy Agency


Relevant Statements from IAEA Safety Standards

The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation

Principle 6: Limitation of risks to individuals

"Measures for controlling radiation risks must ensure that no individual bears an unacceptable risk of harm"

Implications:

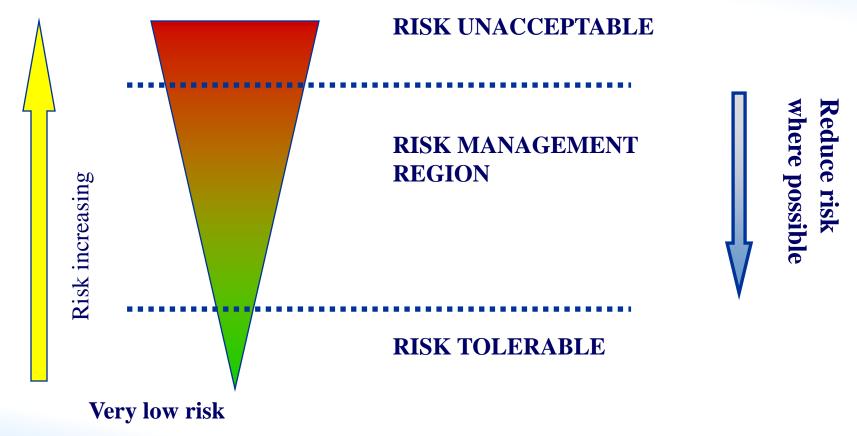
- 1) Risk associated with nuclear installations needs to be assessed
- 2) Guidance (criteria) for 'unacceptable risk' need to be established
- 3) Relevant measures (design features and procedures) provided


Relevant Statements from IAEA Safety Standards

GSR Part 4

Requirement 4: Purpose of the safety assessment

The primary purposes of the safety assessment shall be to determine whether an adequate level of safety has been achieved for a facility or activity and whether the basic **safety objectives** and **safety criteria** established by the designer, the operating organization and the regulatory body have been fulfilled.

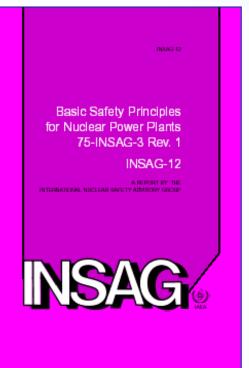


General Framework for Defining Risk Metrics (Acceptance Criteria)

Reactor Safety Goal Policy Statement

- Originally issued in 1986 [Fed Reg. 51, No. 149]
- Expressed Commission's policy as:
 - "... consequences of nuclear power operations such that individual bear no significant additional risk to life and health"
 - Societal risks from NPP ... "should be comparable or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risk"

• Established Quantitative Health Objectives (QHOs)


- Early fatality risk (0.1% of total accident risk) and latent cancer risk (0.1% from all causes)
 - For an individual living in the vicinity of a NPP
- Based on the risk of accidental death in the U.S., this implies a prompt fatality QHO of $5\cdot 10^{-7}$ per year
- Based on the occurrence of cancer fatalities, this implies a latent cancer fatality QHO of $2 \cdot 10^{-6}$ per year

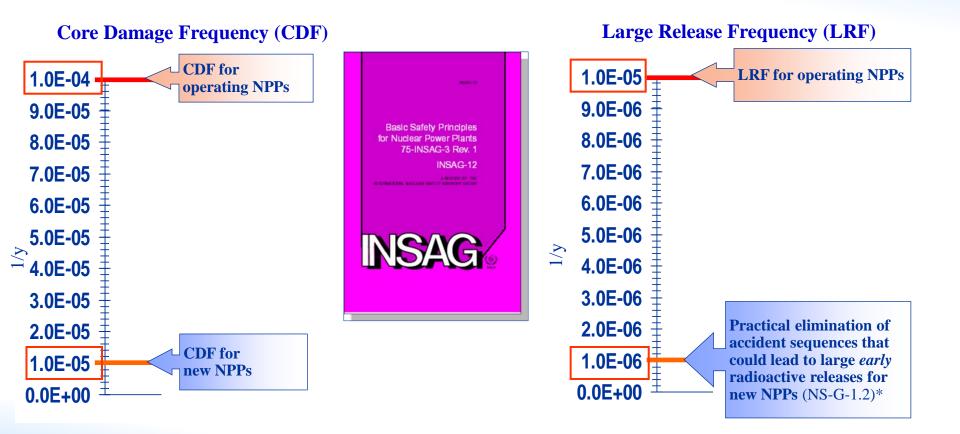
Safety Goal Policy (concluded)

- Interpretation by RB staff
 - Reg Guide 1.174 suggests surrogates for QHOs, including:
 - Latent Cancer:
 - Core Damage Frequency (CDF) < 10⁻⁴ per reactor-year
 - Prompt Fatality:
 - Large Early Release Frequency (LERF) $< 10^{-5}$ per reactor-year

INSAG-12

Basic Safety Principles for Nuclear Power Plants, 75-INSAG-3 Rev. 1, INSAG-12, A report by the International Nuclear Safety Advisory Group, IAEA, Vienna, 1999

- Revision of the original 75-INSAG-3 (1988)


International <u>N</u>uclear <u>Safety G</u>roup

INSAG

- A group of experts with high professional competence in the field of safety working in regulatory organizations, research and academic institutions and the nuclear industry
- Objective: to provide authoritative advice and guidance on nuclear safety approaches, policies and principles
- INSAG provides recommendations and opinions on current and emerging nuclear safety issues to the IAEA, the nuclear community and the public

Concept of Numerical Safety Goals Considered in INSAG-12

Examples of National Risk Criteria

Definition of Core Damage

- Core Damage can be defined differently in different countries and for different reactors
 - Highest node temperature, core collapsed liquid level
 - Cladding temperature limit, percentage of cladding thickness oxidized, etc.
- Parameters and associated acceptance criteria for core damage in PSAs
 - <u>BWR:</u>
 - Collapsed liquid level less than 1/3 core height or code-predicted peak core temperature > $2500^{\circ}F$ (1370°C)
 - <u>PWR:</u>
 - Collapsed liquid level below top of active fuel for a prolonged period or
 - Code-predicted core peak node temperature > 2200°F (1204°C) using a code with detailed core modelling or
 - Code-predicted core exit temperature > 1200°F (650°C) for 30 min using a code with simplified core modelling
 - Core uncover of any duration, etc.

– <u>RMBK, CANDU</u>

- Different levels of core or fuel damage are used to reflect scenarios with damage limited to
 - only one channel; a group of channels
 - a portion of the core; the entire core
- Core Damage Frequency may be incomparable between different type of plants and in different countries

Examples of National Risk Criteria Based on CDF

- Some countries accept INSAG-12 suggestions
 - CDF $\leq 10^{-4}$ per reactor-year for existing plants
 - CDF $\leq 10^{-5}$ per reactor-year for new plants
- European Utility Requirements $\text{CDF} \le 10^{-5}$ per reactor-year
- Russia
 - CDF $\leq 10^{-5}$ per reactor-year
- Finland
 - CDF $\leq 10^{-5}$ per reactor-year

Definition of Level-2 PSA Risk Criteria

- A typical numerical safety criterion relates to the large (early) release frequency
 - "Large (early) release" a release of radioactive material that require a (short-term) off-site emergency arrangements to be implemented
 - The release can be specified in several ways
 - o Absolute quantities (in Becquerels) of the most significant radionuclide's released
 - o Fraction of the inventory of the core
 - o Specified dose to the most exposed person off the site
 - o Release resulting in 'unacceptable consequences', etc.
- Level-2 PSA results may be incomparable between different countries if different definitions for releases are used

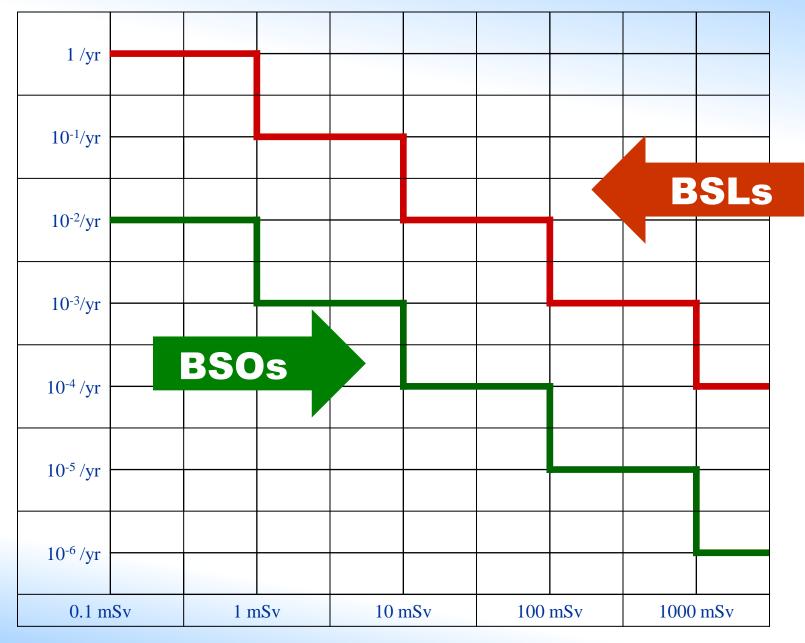
Examples of National Risk Criteria Based on L(E)RF

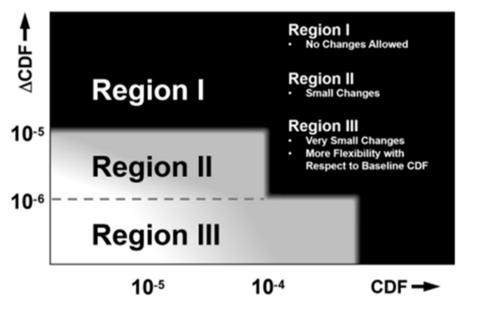
- Some countries accept INSAG-12 suggestions
 - LERF $\leq 10^{-5}$ per reactor-year for existing plants
 - LERF $\leq 10^{-6}$ per reactor-year for future plants
- European Utility Requirements $LRF \le 10^{-6}$ per reactor-year
- Russia
 - LERF $\leq 10^{-7}$ per reactor-year

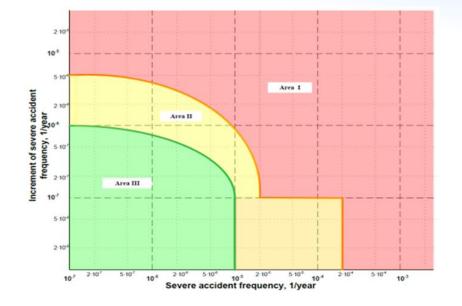
LERF - release which leads to exceeding dose limit at Accident Planning Zone Boundary specified as **5 mZv** (body) or **50 mZv** (thyroid)

Finland

- LRF \leq **5**-10⁻⁷ per year LRF - of 100 TBq of Cs-137


Definition of Level-3 PSA Risk Criteria


- Various numerical safety criteria are used:
 - Health effects
 - Dose rates over a short period of time occurs close to the point of release
 - Dose rates over an extended period of time occurs over a wide range
 - Societal risk measures
 - Individual death (early or late)
 - Number of deaths (early or late)
 - Non-fatal deterministic or stochastic effects
 - Number of hereditary effects
 - Collective dose
 - Area of ground contaminated
 - Number of individuals effected by countermeasures
 - Monetary costs of the accident


Examples of Risk Criteria Based on Level-3 PSA

National practice on risk ranking using safety goals

References

- Stanley Kaplan and B. John Garrick "On The Quantitative Definition of Risk", Risk Analysis, Vol. I, No. I, 1981
- Development and Application of Level-1 PSA, IAEA Safety Standards Series, SSG-3, IAEA Vienna (2010)
- Development and Application of Level-2 PSA, IAEA Safety Standards Series, SSG-4, IAEA Vienna (2010)

Thank you for your attention Questions?

104