Joint KINS-IAEA-ANNuR/ANSN/FNRBA BPTC Course on Nuclear Safety, 19 ~ 30 September 2022, KINS, Korea

Radioactive Waste Management

Sungil, KIM

sikim@kins.re.kr

Korea Institute of Nuclear Safety

Contents

- I. Introduction
- **II. Safety Standard for RWM**
- **III. Predisposal Management of RW**
- **IV. Disposal of RW**
- V. Korean Approach for RWM

I. Introduction

- II. Safety Standard for RWM
- III. Predisposal Management of RW
- IV. Disposal of RW
- V. Korean Approach for RWM

What is Radioactive Waste?

Definition of radioactive waste

■ IAEA Safety Glossary (2007 edition)

For legal and regulatory purposes,

Waste that contains, or is contaminated with, radionuclides (RNs) at concentrations or activities greater than clearance levels as established by the regulatory body

 radioactive material in gaseous, liquid or solid form for which no further use is foreseen and which is controlled as radioactive waste by a regulatory body under the legislative and regulatory framework

Clearance

Clearance

- Clearance : Removal of radioactive material or radioactive objects within authorized practices from any further regulatory control by the regulatory body.
 - According to radionuclide specific clearance levels derived and approved by the regulatory body
 - To minimize the volume of untreated waste to be stored.

Lifecycle of regulatory control on RW

Activities in RWM

Definition of basic terms

Predisposal, disposal, and storage

Predisposal

Any waste management steps carried out prior to disposal, such as pretreatment, treatment, conditioning, storage and transport activities

Disposal

Emplacement of waste in an appropriate facility without the intention of retrieval

Storage

Holding of radioactive sources, spent fuel or radioactive waste in a facility that provides for their/its containment, with the intention of retrieval

Basic approach to RWM

- Concentration and Containment
 - lon exchange, filtration, evaporation, packaging, disposal, etc.
 - Delay and Decay
 - Decay of short-lived radionuclides
 - Charcoal delay bed, gas decay tank, etc.
- Dilution and Dispersion
 - Authorized discharge of liquid/gaseous waste

Recycling ??

Interdependence of each step of RWM

Classification of RW

Physical/Chemical form

- Liquid or waterborne
- Gaseous or airborne
- Solid

Radioactivity/Radiation level

Exempt level, Low level, intermediate level, high level, etc.

Lifetime of radionuclide

Short-lives, long-lived, etc.

Heat-generating capacity

Heat-generating, Non heat-generating, etc.

Spent fuel: waste or not?

Standard classification system

Past and Present

IAEA Safety Series 111-G-1.1 (1994)

IAEA Safety Standards No. GSG-1 (2009)

Typical Strategy of Waste Management

I. Introduction

II. Safety Standard for RWM

- III. Predisposal Management of RW
- IV. Disposal of RW
- V. Korean Approach for RWM

IAEA Safety Standards

Hierarchy

IAEA Safety Standard

Safety Fundamental

General Safety Requirements				
Part 1. Governmental, Legal and Regulatory Framework for Safety				
Part 2. Leadership and Management for Safety				
Part 3. Radiation Protection and the Safety of Radiation Sources				
Part 4. Safety Assessment for Facilities and Activities				
Part 5. Predisposal Management of Radioactive Waste				
Part 6. Decommissioning and Termination of Activities				
Part 7. Emergency Preparedness and Response				

Specific Safety Requirements

1. Site Evaluation for Nuclear Installations

2. Safety of Nuclear Power Plant

2.1 Design and Construction 2.2 Commissioning and Operation

- 3. Safety of Research Reactors
- 4. Safety of Nuclear Fuel Cycle Facilities
- 5. Safety of Radioactive Waste Disposal Facilities
- 6. Safe Transport of Radioactive Material

Collection of Safety Guides

IAEA Safety Standards on RWM

Predisposal

IAEA Safety Standards for protecting people and the environment	IAEA SAFETY STANDARDS SERIES	IAEA SAFETY STANDARDS SERIES	IAEA Safety Standards for protecting people and the environment	IAEA Safety Standards for protecting people and the environment	IAEA Safety Standards for protecting people and the environment	IAEA Safety Standards for protecting people and the environment
Classification of Radioactive Waste	Predisposal Management of Low and Intermediate Level Radioactive Waste	Predisposal Management of High Level Radioactive Waste	Storage of Radioactive Waste	Management of Waste from the Use of Radioactive Material in Medicine, Industry, Agriculture, Research and Education	The Safety Case and Safety Assessment for the Predisposal Management of Radioactive Waste	The Management System for the Processing, Handling and Storage of Radioactive Waste
General Safety Guide	SAFETY GUIDE	SAFETY GUIDE	Safety Guide	Safety Guide	General Safety Guide	Safety Guide
N0. GSG-1	No. WS-G-2.5	No. WS-G-2.6	NO. WS-G-0.1	NO. WS-G-2.7	N0. GSG-3	No. GS-G-3.3
	CONTRACTORS NEEDEN	C				

IAEA Safety Standards on RWM

Disposal

- Site Aspects
- Design
- Construction
- Operation
- Closure
- Post Closure
- Safety Assessment
- Management System

IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards	IAEA Safety Standards
for protecting people and the environment	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment	for protecting people and the environment
Classification of Radioactive Waste	Near Surface Disposal Facilities for Radioactive Waste	Geological Disposal Facilities for Radioactive Waste	Borehole Disposal Facilities for Radioactive Waste	The Safety Case and Safety Assessment for the Disposal of Radioactive Waste	Monitoring and Surveillance of Radioactive Waste Disposal Facilities	The Management System for the Disposal of Radioactive Waste
General Safety Guide	Specific Safety Guide	Specific Safety Guide	Specific Safety Guide	Specific Safety Guide	Specific Safety Guide	Safety Guide
No. GSG-1	No. SSG-29	No. SSG-14	No. SSG-1	No. SSG-23	No. SSG-31	No. GS-G-3.4

■ 2022.01, IAEA website

Safety Fundamentals

SF-1	Fundamental Safety Principles	2006
------	-------------------------------	------

Safety Requirements

GSR Part 3	International BSS(SS-115(1996) 개정본)	2014
GSR Part 5	Predisposal Management of RW	2009
GSR Part 6	Decommissioning of Facilities	2014
SSR-5	Disposal of Radioactive Waste	2011

2022.01, IAEA website

Safety Guides

	GSG-1	Classification of RW	2009
	RS-G-1.7	Application of the Concepts of Exclusion, Exemption and Clearance	2004
Gen eral	DS499 DS500	Application of the Concept of Exemption/Application of the Concept of Clearance(Rev. of RS-G-1.7, 2016~2022)	-
	GSG-9	Regulatory Control of Radioactive Discharges to the Environment	2018
	GSG-16	Leadership, Management & Culture for Safety in RWM	2022
	DS526	National Polices & Strategies for the Safety of RW & SF	_
	<u>GS-G-3.4</u>	The Management System For the Disposal of RW	2008
	SSG-1 DS512	Borehole Disposal Facilities for RW Reversion of Borehole Disposal Facilities for RW(2017~2021)	2009 -
Disp	SSG-14	Geological Disposal Facilities for RW	2011
osal	SSG-23	The Safety Case and Safety Assessment for the Disposal of RW	2012
	SSG-29	Near Surface Disposal Facilities for RW	2014
	SSG-31	Monitoring & Surveillance of RW Disposal Facilities	2014

2022.01, IAEA website

Safety Guides

	GSG-3	The Safety Case and S.A. for the Predisposal management of RW	2013
	WS-G-6.1	Storage of Radioactive Waste	2006
	SSG-15	Storage of Spent Nuclear Fuel	2020
	NS-G-4.6	RP & RWM in the Design & Operation of RRs	2008
Pred	GS-G-3.3	The Manag. Sys. for the Processing, Handling and Storage of RW	2008
ispo sal	SSG-40, 41	Predisposal Mange. Of RW from NPPs-RRs(40), Fuel Cycle Fac.(41)	2016
	WS-G-1.2	Management Of RW from the mining & milling of Ores	2002
	SSG-17	Control of Orphan Sources & Other RM in the Metal Recycling & Production Industries	2012
	SSG-45	Predisposal Management Of RW from the Use of RM in Medicine,	2019
	- WS-G-3.1 -	Remediation Process for Areas Affected by Past Activities and	2007
Dec	DS468	Accidents/ Rev. of WS-G-3.1(2012~2016)	-
om	WS-G-5.1	Release of Sites from Reg. Control on Termination of Practices	2006
m	WS-G-5.2	Safety Assessment for the Decomm. of Facilities Using RM	2008
	SSG-47	Decomm. Of NPPs, RRs and Other Nuclear Fuel Cycle Facilities	2018 22

Principles of RWM

IAEA Safety Series No. 111-F (1995)

- Principle 1: Protection of human health
- Principle 2: Protection of the environment
- Principle 3: Protection beyond national borders
 - to assure that possible effects on human health and the environment beyond national borders will be taken into account
- Principle 4: Protection of future generations
 - predicted impacts on the health of future generations will not be greater than relevant levels of impact that are acceptable today
- Principle 5: Burdens on future generations
 - not to impose undue burdens on future generations

Principles of RWM

IAEA Safety Series No. 111-F (1995)

Principle 6: National legal framework

- within a national legal framework including clear allocation of responsibilities and provision for independent regulatory functions
- Principle 7: Control of radioactive waste generation
 - Generation shall be kept to the minimum practicable
- Principle 8: Generation/management interdependencies
 - Interdependencies among all steps in RW generation and management shall be appropriately taken into account
- Principle 9: Safety of facilities
 - The safety of facilities for RWM shall be appropriately assured during their lifetime

I. Introduction

II. Safety Standard for RWM

III. Predisposal Management of RW

IV. Disposal of RW

V. Korean Approach of disposal of RW

Source Term

Major radionuclides at reactor facility

- Fission products (FPs)
 - ► Noble gases: ¹³³Xe, ⁸⁵Kr, etc.
 - ► Halogens: ¹³¹I, ¹³³I, etc.
 - ► Particulates: ¹³⁷Cs, ¹³⁴Cs, ⁹⁰Sr, etc.
- Activation Products (APs) or CRUD
 - ▶ ⁵⁸Co, ⁶⁰Co, ⁵⁹Fe, ⁵¹Cr, ⁵⁴Mn, etc.
- Others: ³H, ¹⁴C, ¹⁶N, etc.

Overall scheme of predisposal RWM

Components in LRWMS

- Filter: Separation of Suspended Solids
- Centrifuge: Separation of Suspended Solids
- Ion Exchanger: Separation of Ionic RNs
 - Organic resin: Cation bed, Anion bed, Mixed bed
 - Cs-Selective Inorganic Resin: Selective Separation of Cs
- Evaporator: Concentration of LRW by Evaporation
 - Distilled water: to be discharged or recycled
- Membrane Separator: Separation of Solids/Salts
 - Reverse osmosis, Nano filtration, Ultra filtration, Micro filtration, etc.

Components in GRWMS

- Filters: Separation of particulates
 - Particulate pre-filter: separation of large particulates
 - HEPA (High Efficiency Particulate Air) filter: separation of fine particulates
- Charcoal filter: Adsorption of iodine
 - Charcoal delay bed: delay of noble gases
 - Dynamic adsorption (~2.5 d for Kr; ~45 d for Xe)
- Gas decay tank: Decay of noble gases (45 to 60 d)
 - Storage of gases in pressurized tank

Components in GRWMS

HEPA

Charcoal

Solid radioactive waste management system (SRWMS)

Components in SRWMS

- Compactor: Volume reduction
 - Conventional compactor
 - Super compactor (mobile) : 2,000 tons of compression strength
 - Volume reduction factor : 2 ~ 10
- Solidification/Stabilization process
 - Cementation
 - Paraffin Stabilization
 - Vitrification
 - Polymerization: under development
- Drying process
 - Spent resin drying system (SRDS): in connection with high integrity container (HIC)
 - Concentrate waste drying system (CWDS)

Super compaction system

Super Compactor (from http://www.h-p-a.de)

I. Introduction

II. Safety Standard for RWM

III. Predisposal Management of RW

IV. Disposal of RW

V. Korean Approach for RWM

Definition

Disposal

- Emplacement of waste in an appropriate facility without the intention of retrieval
- Storage
 - Holding of radioactive sources, spent fuel or radioactive waste in a facility that provides for their/its containment, with the intention of retrieval

Closure

Administrative and technical actions directed at a repository at the end of its operating lifetime — e.g. covering of the disposed waste (for a near surface repository) or backfilling and/or sealing (for a geological repository and the passages leading to it) — and the termination and completion of activities in any associated structures

Definition

Waste acceptance criteria/requirements

Quantitative or qualitative criteria specified by the regulatory body, or specified by an operator and approved by the regulatory body, for radioactive waste to be accepted by the operator of a repository for disposal, or by the operator of a storage facility for storage

Safety case

A collection of arguments and evidence in support of the safety of a facility or activity
Disposal Options

4 options for waste disposal as follows:

A - On surface	Storage
----------------	---------

- B Near surface < 30 M
- C Deep disposal 100's M
- D Borehole

Schematic – Disposal Options

Disposal Option: International Practices

	T½ (Year)	Volumes	Activity Conc.	Preferred option	
RI Sources	< 1	Low		Storage	
	1-5	Low	High	Storage	
	> 30	Low		Deep disposal, borehole	
L + ILW	< 30	Medium - Large (10 ³ – 10 ⁶ M ³)	Low - Med ium	Near surface	
HLW	> 30	Medium (10 ³ – 10 ⁵ M ³)	Very High	Deep disposals – 100's M	
NORM	10 ⁴	Very Large (10 ⁶ – 10 ⁸ M ³)	Low - Med ium	Below 30 M ideally	

Types of disposal facility

Landfill disposal for VLLW

Sweden (Forsmark)

France (Morvillers)

Spain (El Cabril)

Japan (JAEA)

Specific landfill disposal for VLLW

Ringhals, Sweden

- Type: landfill
- Depth: 0m
- Capacity
 - 3,500 m³, existing
 - 10,000 m³, planned
- Host medium: Crystalline rock (granite)
- Landfill for VLLW
 - Activity content: total 100 GBq
 - Specific activity: max 300 Bq/g
 - Surface dose rate: max 0.5 mSv/h

Types of disposal facility

Near-surface disposal for LILW

Covered trench

Vault - open

Vault – domed

Vault - closed

Near surface disposal for LILW

- Type: engineered surface
- Depth: 0m
- Capacity: 527,225 m³
- Host medium: crystalline rock
- Operation: 1969~1994
- Closure: 1991~1997
- Institutional control: 2001~
- Centre de la Manche facility: surface disposal facility for LIL-SL waste

La Manche, France

Near surface disposal for LILW

- Type: engineered surface
- Depth: 0m
- Capacity: 1,000,000 m³
- Host medium:
 sedimentary rock
 (consolidated clay)
- Centre de stockage FMA de l'Aube facility: surface disposal facility for FMA-VC (low- and intermediate-level, short lived) waste

L'Aube, France

Types of disposal facility

Intermediate-depth and geological disposal

Intermediate-depth disposal

Deep geological disposal

Main Shaft Ventilation Shaft Headframe Building

Intermediate-depth disposal for LILW

Forsmark, Sweden

- Type: rock cavern (under sea, land access)
- Depth: > 50m
- Capacity: 63,000 m³
- Host medium: crystalline rock (granite)
- Repository for disposal of operational LILW in underground cavities excavated in crystalline rock

Intermediate-depth disposal for LILW

Olkiluoto, Finland

- Type: rock caverns
- Depth: > 100m
- Capacity: 6,400 + 9,100 m³
- Host medium:

crystalline rock (granite)

Geological disposal – Finland

Disposal concept

DEEP GEOLOGICAL DISPOSAL: WIPP-USA WIPP Facility and Stratigraphic Sequence

Borehole Disposal

Near surface borehole for disposal (scale size in mm) of unconditioned sealed sources at a Radon type facility.

Borehole disposal of disused sealed sources at the Püspökszilágy repository in Hungary

Borehole disposal for disused sealed radioactive sources

Disposal facilities worldwide

Repository for VLLW

Country	Facility	Disposal capacity	Operation period	Туре
France	Morviellers	650,000 m³, planned	2003~	Simple landfill
Spain	El Cabril	120,000 m³, planned	2007~	Simple landfill
Japan	Tokai	2,520 m³	1995~1996	Simple landfill
Sweden	FKA, Forsmark	4,250 m ³	1989~	Simple landfill
	OKG	7,500㎡ 16,000 ㎡, planned	1987~	Simple landfill
	Ringhals	3,500㎡ 10,000㎡, planned	1993~	Simple landfill
	Studsvik	900㎡ 1,200 ㎡, planned	1987~	Simple landfill

Disposal facilities worldwide

Repository for LILW

Country	Facility	Disposal capacity	Operation period	Туре
USA	Barnwell	880,000 m ³	1971~	Near surface
	Richland	1,700,000 m³	1965~	Near surface
	Clive	4,571,000 m³ 816,000 m³	1991~ 1995~	Near surface
France	La Manche	527,225 m³	1969~1994	Near surface
	L'Aube	1,000,000 m³	1992~	Near surface
Spain	El Cabril	100,000 m³	1993~	Near surface
UK	Drigg	1,800,000 m³	1959~	Near surface
Japan	Rokkasho	1 st unit: 40,000 m³ 2 nd unit: 40,000 m³	1992~ 2000~	Near surface
Finland	Olkiluto	6,400 m³ 9,100 m³	1992~	Intermediate depth
	Loviisa	8,740 m ³	1998~	Intermediate depth
Sweden	SFR	63,000 m ³	1988~	Intermediate depth

Safety features of disposal facility

- Long-term (post-closure) safety
 - Depending on the performance of multiple elements in disposal facility such as below
 - Waste characteristics
 - Waste form, container, package, radionuclide inventory, etc.
- Disposal system and EBS
 - Disposal unit, disposal container, backfill, drainage, cover, etc.
 - Limiting water infiltration and leaching from waste
- Site characteristics
 - Geosphere, hydrosphere, atmosphere, ecosystem, etc.
 - Ultimate isolation/delay of waste
 - Institutional control post closure phase
 - Precluding inadvertent intrusion, performance monitoring and preventive/corrective actions

Safety features of repository

SSCs criteria Siting criteria Waste Acceptance **Criteria (WAC)** Natural barrier **EBS** Characteristics Waste **Characteristics** characteristics

Institutional control

Overall safety requirement (Performance objective)

Sample: Safety Assessment Case

Conceptual model

Performance objectives

Performance objectives: limiting prescriptive dose/risk constraints for certain design, operation or post-closure requirements that make health and safety-related practices to be performed as safe enough in view of regulatory point

I. Introduction

II. Safety Standard for RWM

- III. Predisposal Management of RWM
- IV. Disposal of RW

V. Korean Approach for RWM

Major Nuclear Facilities

Nuclear Power Plants (NPPs)

- 24 units in operation and 2 units under construction
- 2 units under preoperational inspection
- 2 units in permanently shut down

Research Rectors (RRs)

- HANARO (RR)
- KRR 1 and 2 (RR, under decommissioning)

Nuclear Fuel Cycle Facilities (FCs)

- Fuel Fabrication Plant for NPP
- Fuel Fabrication Facility for RR
- Post-Irradiation Examination Facility (PIEF)
- Uranium Conversion Facility (released from regulation)

□ Radioactive Waste Management Facilities (RW)

- RI Waste Management Facility
- Wolsong LILW Disposal Center (WLDC)
 - \rightarrow in operation since 2015

Hanul (Ulchin) Seoul RR Wolsong Daejeon RRIRV **FCFCFC** FC Saeul Kori NPP

(As of Mar. 31, 2020)

Rep. of Korea, Country Group 8, 7th RM of JC, June 29, 2022

Framework of RW Management

LILW Management Program

Inventory of Radioactive Waste

Framework of SF Management

National policy and implementation

```
RWM Policy-making process
```


Basic Plan for LILW Management

Amendment of Basic Plan for LILW management

◆ Basic Plan for RW management revised in January 2015

- Plan of operation for the 1st phase facility of WLDC (from 2015)
- Plan of construction for the 2nd phase facility of WLDC (by 2019)
- Exclusion of basic plan for SF management in this amendment

 \rightarrow Because public engagement activities were in progress at that time.

Regulation for Disposal Facility

Stepwise regulatory procedure

Regulation for Disposal Facility

Regulatory framework

Regulation for Interim Storage of SNF

Stepwise regulatory procedure

Current Satus of Construction of the 2nd phase of Disposal Facility

PHASED CONSTRUCTION PLAN OF WLDC

Commissioning Wolsong LILW Disposal Center

□ Completion of construction of WLDC

- ♦ CP and OL issued in July 2008
- Construction period: August 2008 June 2014 (about 71 months)
- Pre-operational test conducted from July to December 2014
- Approval of operation from NSSC in December 2014
 - \rightarrow after passed pre-operational inspection and implemented a follow-up program prior to operation

☐ The emplacement of waste package has started in July 2015.

Development of the 2nd Phase of WLDC

□ KORAD's Development Plan for the 2nd Phase of WLDC

- Location: Site of WLDC
- Disposal capacity: 125,000 drums (200L drum equivalents)
- Disposal type: Engineered shallow land disposal
- Time schedule (based on KORAD's Plan)
 - Site investigation: Jan. 2012 Aug. 2015
 - Application of CP/OL: Nov. 2015
- ♦ CP and OL issued in July 2022
- Construction(~2023.12)

Dedicated transport ship for LILW

- **Name:** Cheong-Jeong Noori
- Purpose: Sea Transport of LILW packages

Design Specifications

- Applicable Codes and Standards: IMO-INF Level II, NSSC Notice , etc.
- Dead weight tonnage: 950 ton (~ 1,000 Packages of 200 or 320L
 Drums)
- ▶ Length: ~ 78 m
- ▶ Width: ~ 16 m
LILW transport container

Type: IP-2

Applicable Codes and Standards: NSA and subsequent transport regulations, IAEA Safety Requirement No.TS-R-1

Design Specifications

- Capacity: 8 Drums of 200L or 320L LILW Package
- ▶ Dimension: 3.4m×1.6m×1.2m (H)
- Weight: 3.1 ton (empty)
- Load Limit: 6.5 ton (including Waste Packages)
- Max. Permissible Activity: 100A₂ / vessel
- Max. Permissible Dose Rate:
 - 2 mSv/h at surface
 - 0.1 mSv/h at 2m-distance

RW inventory database

WAste Comprehensive Information Database (WACID) wacid.kins.re.kr

Actions to Secure Storage Capacity for SF

- PWR: expanded by re-racking and transshipment to other units
- PHWR: dry storage facility(300 Silo) since 1991 and the 7 modules of dry storage facility (MACSTOR/KN-400) since 2010 on site

NPP Site	Measures	
Kori	Unit 1 and 2: Transshipment Unit 3 and 4: Addition and Re- racking	AFR-RS
Hanbit (Yonggwan g)	Unit 1: Addition and Re-racking Unit 2: Addition Unit 3 and 4: Re-racking Unit 5 and 6: Re-racking is planned in 2012	Addition
Hanul (Ulchin)	Unit 1 and 2: Transshipment Unit 1 to 4: Re-racking Unit 5 and 6: Re-racking is planned in 2013	Transshipment Re- racking Temporary storage
Wolsong (PHWR)	AFR-RS Dry Storage: Silos and Vaults	

Actions to Secure Storage Capacity for PHWR SF

- Dry Storage for PHWR Spent Fuel Silo & Vault
 - Silo : 300 units
 - MACSTOR/KN400 : 7 modules

Actions to Secure Storage Capacity for PHWR SF

\rm 4 Silo

- 300 units of silos
- 9 fuel baskets per silo
- 60 bundles per basket

MACSTOR/KN-400

- Capacity
 - 7 modules (24,000 bundles per modules)
 - 40 cylinders (4×10 array) per modul
 - 10 fuel basket per cylinder
 - 60 bundles per basket
- constructed since September 2007
- started operation in 2010

Safety First KINS, trusted by the public

Thank You

