

Emergency Monitoring

IAEA-KINS Workshop on the Emergency Preparedness and Response to Nuclear and Radiological Emergencies

19 - 23 June 2023, Daejeon, Republic of Korea

Introduction

- The primary purpose of emergency monitoring is to provide timely information on which first decisions on protective actions (primarily based on the accident classification) can be confirmed or revised
- This means detection of radioactive material, determination of its location and its nature
- Capability to provide rapid monitoring is essential

General Considerations

- A measurement result is useful only if it adequately represents the quantity under consideration
- Radioactive decay is a random process
- Due to the stochastic nature of this process, several measurements of a specified quantity are needed
- Evaluation of measured results is needed
 - To get appropriate estimate of the quantity under consideration and
 - on its associated degree of confidence

Emergency Monitoring. General Goal

- To assist, confirm or revise decision-making regarding
 - WHETHER
 - WHEN

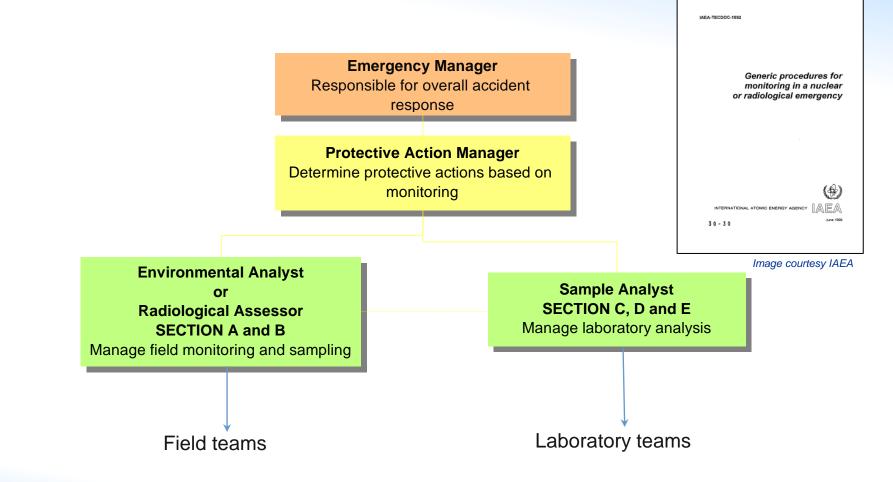
and

– WHERE

to apply protective actions

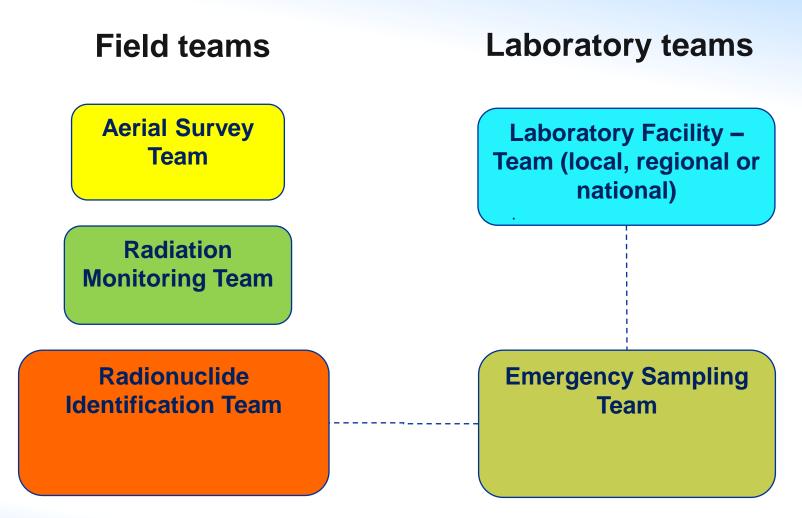
Image courtesy IAEA

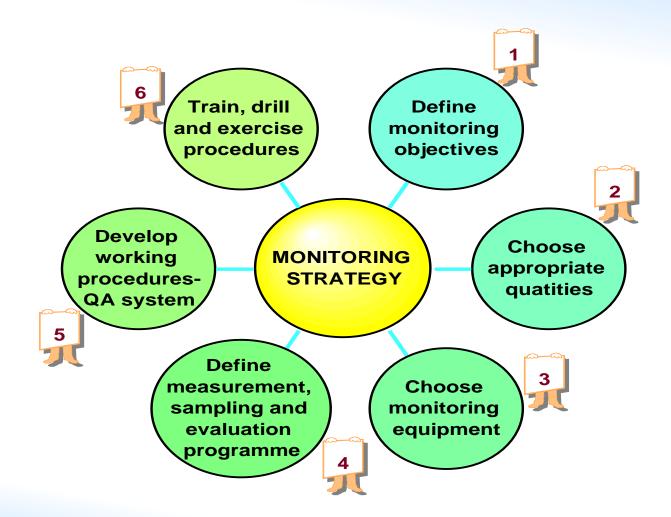
Emergency Monitoring. General Objectives


- The **objectives** of emergency monitoring in general are:
 - To help decision makers to assess the need for protective actions and interventions on the basis of operational intervention levels (OILs)
 - To assist in preventing the spread of contamination
 - To provide information for protection of emergency workers
 - To confirm **absence** of radiation/contamination

Emergency Monitoring. General objectives

- To provide accurate and timely data
 - On the level and degree of hazards resulting from a radiological emergency
- To determine the extent and duration of the hazard
- To provide details on the physical and chemical characteristics of the hazard and
- To confirm the efficiency of remedial measures
 - Such as decontamination procedures etc.

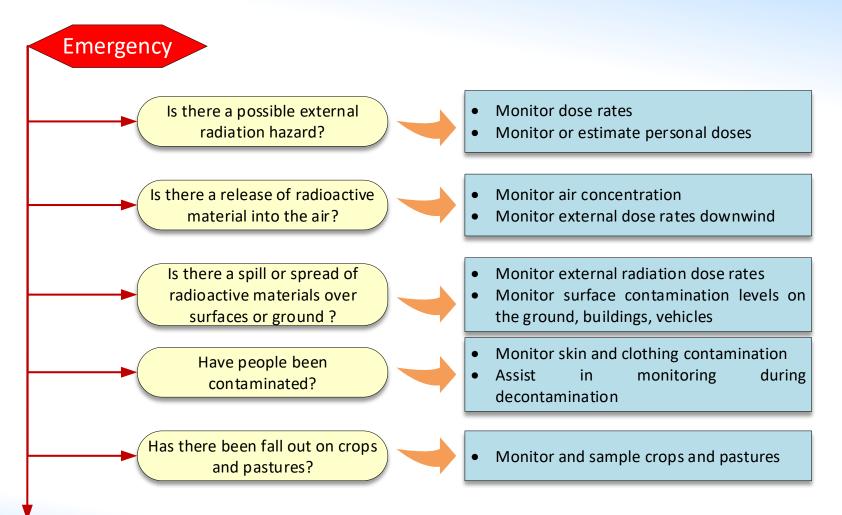

Generic Monitoring Organization


Generic Monitoring Organization (cont)

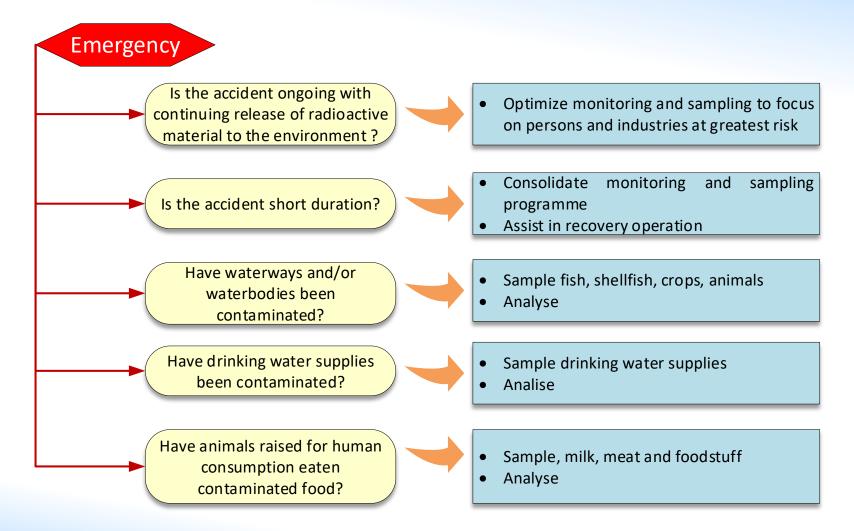
Monitoring Strategy

Design of Emergency Monitoring Program

- The design of the emergency monitoring and sampling programme will be determined:
 - By the primary objectives for which it has been established
 - By the scale of the accident envisaged and
 - By the availability of qualified teams to respond to radiological emergency


General Priorities in Designing Emergency Monitoring

- In the initial response, the determination of affected areas should be the first priority
 - Which are truly "dirty" and
 - Where people can be affected
- The priority for monitoring and sampling should take into account
 - The composition of the affected area:
 - Residential, agricultural, rural, commercial
 - Industrial activities
 - Public services
 - Infrastructure elements


Decision Sequence Tree

Decision Sequence Tree (cont.)

Suggested Number of Monitoring Teams

Emergency preparedness category	Aerial Survey Team	Radiation monitoring team	Radionuclide Identification Team	Laboratory Facility – Team	Emergency Sampling Team
I	1	6	3	2	6
П	1	3	1	2	2
Ш		1	1	1	1
IV		1	1	1	1
V		1	2	1	3

Aerial Survey Team

- Aerial monitoring can be regarded as an appropriate method for a rapid survey
 - To provide information on large area surface contamination (ground contamination survey) or
 - To search, detect localize and identify gamma-emitting source(s) over large areas in order to render the source safe

Environmental Survey Team

- Environmental Survey Team should be technical personnel trained in:
 - Radiation dose rate measurements
 - Surface contamination measurements
- Team should be regularly exercised in emergency response scenarios

Personal Monitoring and Decontamination Team

- Members need to be skilled in the use of contamination monitors
 - To assess contamination
 - To prevent the spread of contamination
 - To monitor the efficiency of decontamination of people and surfaces

Image courtesy IAEA

 All such persons should receive regular refresher training in monitoring techniques

In-situ Gamma Spectrometry Team

- A specialist team skilled in the use of gamma spectrometers in field situations
- From environmental laboratories
- Geological surveyors skilled in radiometric assessments of the Earth's surfaces

Air Sampling Team

- Air Sampling Team should be skilled at •
 - Taking air samples
 - External dose rate measurements
 - Contamination monitoring
- Training required
 - in field assessment of air samples
 - Using portable radiation monitoring instruments
 - And placing the sample in a suitable sealed and labeled container

Image courtesv IAEA

Environmental and Ingestion Sampling Team

- Team members should be experienced in environmental sampling
- Teams may also need to be experienced in
 - Radiological assessment techniques to monitor their own safety and
 - Provide field radiological data if requested to do so

Laboratory Facility – Team

- It is composed of persons well trained in
 - Sample preparation
 - Gamma spectrometry
 - Other radionuclide analyses techniques
- Such persons should be routinely engaged in:
 - Analyses with well-calibrated equipment
 - Utilizing recognized and validated analytical techniques

Mobile Radiological Laboratories

- To perform rapid analyses
 - Best solution at or near an emergency site
 - If properly equipped

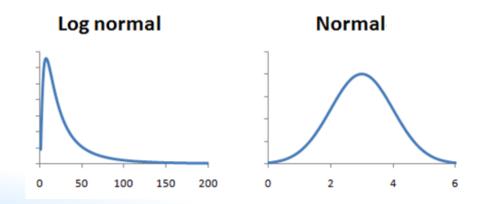


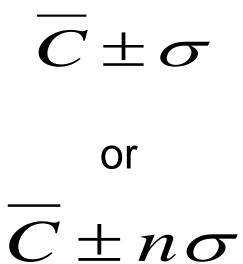
Image courtesy IAEA

Radionuclide Concentration Data Evaluation

- In most cases several samples are analyzed to get a representative value of the radionuclide concentration in the environment, foodstuff, etc.
- Independently measured activities have statistical fluctuations in values
- The frequency distribution of such set of measured values usually follows log-normal distribution

Statistical Uncertainty

 The uncertainty of a value C (with mean value C
) is calculated using the expression:


$$\sigma = \frac{1}{m} \sqrt{\sum_{j=1}^{m} (\overline{C} - C_j)^2}$$
 f a singl

- σ represents the $m \sqrt{\frac{j}{j-1}}$ f a single measurement
- m total number of measurements

Radionuclide Concentration Data Evaluation

• The result of repeated measurements should be recorded/presented as

• where n is generally 2 or 3

Mapping

- Mapping of monitoring data is one of many techniques to present data in a "readable" way
- Mapping can be:
 - Performed manually
 - Computerized, using appropriate software
- Mapping is performed by Environmental Analyst or Radiological Assessor
- In IAEA TECDOC-955 worksheets are prepared for simple manual mapping

Link to the Operational Intervention Levels

- Representative and best estimate values of monitoring data are needed
 - For competent decision making on protective actions which are based on OILs
- Default OIL values are calculated
 under certain assumptions

IAEA Safety Standards for protecting people and the environment

Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency

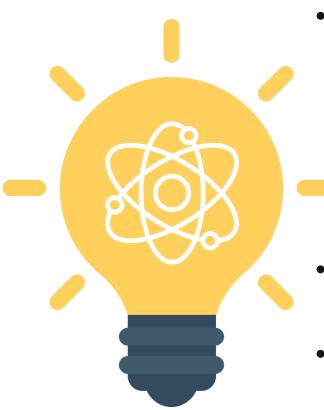
Jointly sponsored by the FAO, IAEA, ILO, PAHO, WHO

🕑 🎡 📖 🧊 🕷

General Safety Guide

No. GSG-2

Image courtesy IAEA


Link to the Operational Intervention Levels (cont.)

OIL 1, 2 and 3	 Gamma (γ) dose rate at 1 m from surface or source Direct beta and alpha surface contamination measurement (counts/s)
OIL 4	 Gamma (γ) dose rate at 10 cm from the skin Direct beta and alpha skin contamination measurement (counts/s)
OIL 5	Gross beta or gross alpha (Bq/kg) activity concentration
OIL 6	 Default radionuclide specific OILs for food, milk and water concentrations from laboratory analysis

Key Points

- Emergency monitoring will provide the data for:
 - Identify the affected areas
 - Assessing the radiation exposure and/or contamination in an emergency
- Hazard assessment provides basis for an emergency monitoring strategy
- An emergency monitoring organization should be set up and maintained
 - Trained and exercised

Where to Get More Information

- IAEA TECDOC-1092 (1999)
- IAEA EPR-Method (2003)

iec.iaea.org iec-information@iaea.org @IAEAIEC

Thank you!

Ms. Muzna Assi

Emergency Preparedness Officer Incident and Emergency Centre

m.assi@iaea.org

