

# Radioactive Waste Management Following a Nuclear or Radiological Emergency

IAEA-KINS Workshop on the Emergency Preparedness and Response to Nuclear and Radiological Emergencies

19 - 23 June 2023, Daejeon, Republic of Korea

#### Introduction



 Requirement 15: "The government shall ensure that radioactive waste is managed safely and effectively in a nuclear or radiological emergency."

#### **Discussion**





 Where does the radioactive waste come from following a nuclear or radiological emergency?

#### **Waste Origin**



- Waste may origin from:
  - Decontamination activities
  - Remediation and clean up activities
  - Decommissioning
  - Ending the operational life of a source



### **Waste Origin - Examples**



- Goiânia, Brazil (1987): Radiological accident involving a radioactive source (137Cs, 50 TBq)
  - Substantial contamination
  - Buildings demolished
  - 3500 m<sup>3</sup> of radioactive waste
- Algeciras, Spain (1998): Unknown <sup>137</sup>Cs melted/release of <sup>137</sup>Cs to air
  - 270 t of contaminated dust
  - US \$3 million for clean-up
  - US \$3 million for waste storage

## **Issues and Challenges**



- Well defined and established governmental, legal and regulatory framework on waste management from normal operations, including:
  - National policies and strategies for radioactive waste management
  - Criteria for declaration of radioactive waste
  - Storage and/or disposal options
  - Well known waste streams

### Issues and Challenges (cont.)



- An emergency may introduce a new waste stream into the national waste management strategy
  - Usually not considered prior to the emergency
- Waste from an emergency may have diverse characteristics
  - Radiological, chemical, physical, mechanical, biological
- Radioactive waste generated from an emergency may overwhelm arrangements and capabilities
  - Due to its volume, characteristics, etc.

### Issues and Challenges (cont.)



- Dealing with large volumes of waste with diverse characteristics will raise necessity for:
  - New techniques and methodologies for waste characterization
  - Options for radioactive waste minimizations, e.g.
    - Reuse and recycling
    - Planning for appropriate pre-disposal management activities
    - New storage and/or disposal facilities

### Issues and Challenges (cont.)



- Tendency to manage unduly all waste as radioactive waste due to radionuclides' presence
  - Usually due to public pressure, political pressure and/or lack of preparedness
  - Impacting the costs needed
- Disposal of radioactive waste long term issue
  - Beyond EPR (and into recovery phase)
  - To follow national policy and strategy for radioactive waste management

#### **Discussion**





 How can we prepare to face these issues and challenges?

## International Requirements on Radioactive Waste Management



- National policy and strategy for radioactive waste management applies for any radioactive waste
  - Irrespective of its origin
- Safe and effective radioactive waste management
- Waste management following an emergency must not compromise the protection strategy





- Preparedness requirements are essential and include:
  - Waste characterization
  - Criteria for waste categorization
  - Waste minimization
  - Methodology for predisposal and storage
  - Dealing with human and animal remains

## International Requirements on Radioactive Waste Management (cont.)



- Other Safety Standards\* provide further requirements and guidance on radioactive waste management:
  - These apply to waste management in planned, emergency and existing exposure situations
  - Targeted to Government, regulatory bodies, operating organizations

<sup>\*</sup> GSR Part 5, SSR-5, GSG-1, WS-G-2.5, WS-G-2.6, WS-G-6.1

### **Planning Basis**



- Anticipate waste characteristics and volumes
  - On the basis of hazard assessment
  - Taking into account past experience
- Review legislative and regulatory framework for
  - radioactive waste safety
  - Management of conventional waste
- Know what may or may not be appropriate waste management
- Review existing practices and resources available

## **Planning Basis (cont.)**



- Consider what might be done with regard to the radioactive waste policy and strategy
  - Assess adequacy of existing waste management strategies to deal with waste generated following an emergency
  - Ensure provisions for its applicability for radioactive waste irrespective of its origin
  - Consider additional waste streams or deviations from existing ones

#### **Emergency Preparedness**



 Use the analysis deriving from planning basis to include waste management considerations as part of overall emergency preparedness and response arrangements



Image courtesy IAEA



- Consider waste generation when justifying and optimizing the protection strategy
  - At the preparedness stage
  - During emergency response
- Engage all relevant stakeholders
  - Their acceptance may play an important role in waste management



- Allocate clearly respective roles and responsibilities
  - For management of radioactive waste and of conventional waste
- Ensure an effective coordinating mechanism
  - Among relevant response organizations and organizations with responsibilities in waste management



- Integrate waste management activities
  - Under the Unified Command and Control System (UCCS)
  - Account for necessary transfer of authority and information following the termination of emergency



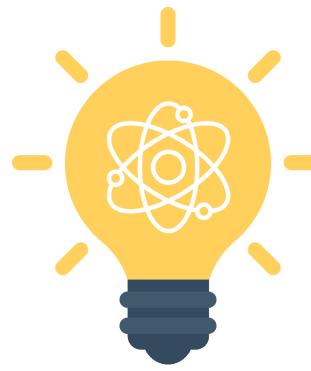


- Advanced planning needs to be made:
  - Guidance for waste characterization for diverse waste properties
  - Guidance for waste acceptance criteria for existing storage/disposal facilities
  - Methodologies for prompt initiation of appropriate predisposal management activities
  - Guidance for feasible options for waste minimization



- Advanced planning to include:
  - Acceptable waste collection points
  - What acceptable storage site characteristics are
  - What would be transport of radioactive waste limitations

#### Other


- Resources available (tools, equipment)
- Procedures
- Training, drills and exercises



- Considerations for management of human and animal remains:
  - Religious practices and cultural practices
  - Possible options applicable
  - Consultation with relevant interested parties on what options may be acceptable
  - Training of workers on the basic radiation protection principles

#### **Key Points**





- Management of radioactive waste is part of preparedness stage
  - Legislative and regulatory framework for radioactive waste should cover waste of any origin
- Challenges to be considered for waste management in emergency:
  - Diverse characteristics of waste normal practices
  - The amount/volume of waste
  - Acceptability of storage/disposal site

#### Where to Get More Information



- IAEA GSR Part 7 (2015)
- IAEA GSR Part 5 (2009)
- IAEA WS-G-3.1 (2007)
- IAEA EPR-Method (2003)

iec.iaea.org
iec-information@iaea.org
@IAEAIEC



## Thank you!

Ms. Muzna Assi

Emergency Preparedness Officer Incident and Emergency Centre

m.assi@iaea.org

